“2016 Summer Seminar for Machine learning”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第18行: 第18行:
 
| 2016/07/13    ||Caixia Wang  || Kernel methods || Ziwei Bai || [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/0/07/KM1.pdf slides]  [http://arch.cslt.org/video/2016/sum-ML/lesson6_Kernel_method.m4v video]  [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/b/b5/Kernel_Methods_for_Pattern_Analysis.pdf Kernel method book] [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/9/95/Pattern_Recognition_and_Machine_Learning.pdf pattern recognition 6-7]
 
| 2016/07/13    ||Caixia Wang  || Kernel methods || Ziwei Bai || [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/0/07/KM1.pdf slides]  [http://arch.cslt.org/video/2016/sum-ML/lesson6_Kernel_method.m4v video]  [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/b/b5/Kernel_Methods_for_Pattern_Analysis.pdf Kernel method book] [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/9/95/Pattern_Recognition_and_Machine_Learning.pdf pattern recognition 6-7]
 
|-
 
|-
| 2016/07/18    ||Yang Feng  || Graphical model: Bayesian approach || Jingyi Lin || [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/d/dd/Chpt7._Graphical_models-bayesian_approach.pdf slides] [http://arch.cslt.org/video/2016/sum-ML/lesson7_Graphical_model.m4v video]  
+
| 2016/07/18    ||Yang Feng  || Graphical model: Basic concept || Jingyi Lin || [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/d/dd/Chpt7._Graphical_models-bayesian_approach.pdf slides] [http://arch.cslt.org/video/2016/sum-ML/lesson7_Graphical_model.m4v video]  
 
|-
 
|-
| 2016/07/19   ||Yang Feng || Graphical model: Random field || Ying Shi ||
+
| 2016/07/21   ||Dong Wang || Graphical model: Training and inference || Ying Shi ||[http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt%208.%20Graphical%20models-2.pptx slides][http://wangd.cslt.org/talks/seminar/2016-sum-ml/chapt8/Graphical%20models-learningInference.pptx Yang's slides]
 
|-
 
|-
| 2016/07/21   ||Dong Wang  || Unsupervised learning || Zhiyong Zhang ||
+
| 2016/07/25   ||Dong Wang  || Unsupervised learning || Zhiyong Zhang ||
 
|-
 
|-
| 2016/07/22   ||Dong Wang  || Non parametric models || Maoning Wang || [http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf Gaussian process]
+
| 2016/07/26   ||Dong Wang  || Non parametric models || Maoning Wang || [http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf Gaussian process]
 
|-
 
|-
| 2016/07/25   ||Dong Wang  || Reinforcement learning || Chao Xing ||
+
| 2016/07/27   ||Dong Wang  || Reinforcement learning || Chao Xing ||
 
|-
 
|-
| 2016/07/26   ||Maoning Wang  || Evolutionary learning || ||
+
| 2016/07/28   ||Maoning Wang  || Evolutionary learning || ||
 
|-
 
|-
| 2016/07/27   ||Dong Wang  || Optimization || Aiting Liu || [http://cs229.stanford.edu/section/cs229-cvxopt.pdf Convex optimization I] [http://cs229.stanford.edu/section/cs229-cvxopt.pdf Convex optimization II]
+
| 2016/07/29   ||Dong Wang  || Optimization || Aiting Liu || [http://cs229.stanford.edu/section/cs229-cvxopt.pdf Convex optimization I] [http://cs229.stanford.edu/section/cs229-cvxopt.pdf Convex optimization II]
 
|-
 
|-
 
|}
 
|}

2016年7月21日 (四) 09:05的版本

  • Location: FIT-1-304


Date Speaker Title Owner Materials
2016/07/04 Dong Wang Machine learning overview slidesvideo(part 2)Algebra review probability review Gaussian distributionLearning theory
2016/07/05 Dong Wang Linear models Aodong Lantian slidesvideo(part 1) video(part 2) NG's lecture 1 NG's lecture 2
2016/07/08 Dong Wang Neural networks Jiyuan Zhang slides video(part 1) video(part 2)
2016/07/11 Dong Wang Deep learning (1) Zhiyuan Caixia slides video(part 1) video(part 2) NIPS 2015 tutorial
2016/07/12 Dong Wang Deep learning (2) Zhiyuan Caixia slides video(part 1) video(part 2) Li Deng's ICASSP16 keynote
2016/07/13 Caixia Wang Kernel methods Ziwei Bai slides video Kernel method book pattern recognition 6-7
2016/07/18 Yang Feng Graphical model: Basic concept Jingyi Lin slides video
2016/07/21 Dong Wang Graphical model: Training and inference Ying Shi slidesYang's slides
2016/07/25 Dong Wang Unsupervised learning Zhiyong Zhang
2016/07/26 Dong Wang Non parametric models Maoning Wang Gaussian process
2016/07/27 Dong Wang Reinforcement learning Chao Xing
2016/07/28 Maoning Wang Evolutionary learning
2016/07/29 Dong Wang Optimization Aiting Liu Convex optimization I Convex optimization II