Date |
Speaker |
Title |
Owner |
Materials
|
2016/07/04 |
Dong Wang |
Machine learning overview |
Dong Wang |
slidesvideo(part 2)Algebra review probability review Gaussian distributionLearning theory
|
2016/07/05 |
Dong Wang |
Linear models |
Aiting Liu; Aodong Li |
slides video(part 1) video(part 2) NG's lecture 1 NG's lecture 2
|
2016/07/08 |
Dong Wang |
Neural networks |
Xing Chao; Aiting Liu; Andy Zhang; 白紫薇 |
slides video(part 1) video(part 2)
|
2016/07/11 |
Dong Wang |
Deep learning (1) |
Hang Luo; Jiyuan Zhang; Zhiyuan |
slides video(part 1) video(part 2) NIPS 2015 tutorial
|
2016/07/12 |
Dong Wang |
Deep learning (2) |
Hang Luo; Jiyuan Zhang; Zhiyuan |
slides video(part 1) video(part 2) Li Deng's ICASSP16 keynote
|
2016/07/13 |
Caixia Wang |
Kernel methods |
Caixia;Ziwei |
slides video Kernel method book pattern recognition 6-7
|
2016/07/18 |
Yang Feng |
Graphical model (1) |
Jingyi Lin; Ying Shi; Yang Wang |
slides video
|
2016/07/21 |
Dong Wang |
Graphical model (2) |
Jingyi Lin; Ying Shi; Yang Wang |
slides video(part 1) video(part 2) Yang's slides Jordan's lecture
|
2016/07/25 |
Dong Wang |
Unsupervised learning |
Lantian; Yixiang |
slides video(part 1) video(part 2) Unsupervised Learning from Zoubin Ghahramani, Cambridge slides from MIT Neural Networks - A Systematic Introduction, Raul Rojas slides from BU manifold slides from MIT
|
2016/07/26 |
Dong Wang |
Non parametric models |
Maoning Wang; |
slides video(part 1) video(part 2) Gaussian process Resource for non-parametric Bayesian A good tutorial
|
2016/07/28 |
Maoning Wang |
Evolutionary learning |
Dong Wang; |
slides videoIntroduction_to_Evolutionary_Computing.pdf
|
2016/07/29 |
Dong Wang |
Reinforcement learning |
Dong Wang |
slides video(part 1) video(part 2) an old but good review state-of-the-art course
|
2016/08/02 |
Dong Wang |
Optimization |
Caixia; |
slides video(part 1) video(part 2) Convex optimization I Convex optimization II
|