“2016 Summer Seminar for Machine learning”版本间的差异
来自cslt Wiki
第14行: | 第14行: | ||
| 2016/07/11 ||Dong Wang || Deep learning (1)|| [http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt4.%20Deep%20learning-1.pptx slides] [http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf NIPS 2015 tutorial] | | 2016/07/11 ||Dong Wang || Deep learning (1)|| [http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt4.%20Deep%20learning-1.pptx slides] [http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf NIPS 2015 tutorial] | ||
|- | |- | ||
− | | 2016/07/ | + | | 2016/07/12 ||Dong Wang || Deep learning (2)|| [http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt5.%20Deep%20learning-2.pptx slides] [http://www.icassp2016.org/SP16_PlenaryDeng_Slides.pdf Li Deng's ICASSP16 keynote] |
|- | |- | ||
− | | 2016/07/ || | + | | 2016/07/13 ||Caixia Wang || Kernel methods || [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/b/b5/Kernel_Methods_for_Pattern_Analysis.pdf Kernel method book] [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/9/95/Pattern_Recognition_and_Machine_Learning.pdf pattern recognition 6-7] |
|- | |- | ||
− | | 2016/07/ || | + | |2016/07/ ||Dong Wang || Unsupervised learning || |
|- | |- | ||
| 2016/07/ ||Dong Wang || Probabilistic learning theory|| | | 2016/07/ ||Dong Wang || Probabilistic learning theory|| |
2016年7月13日 (三) 06:08的版本
- Location: FIT-1-304
Date | Speaker | Title | Materials |
---|---|---|---|
2016/07/04 | Dong Wang | Machine learning overview | slidesvideo(part 2)Algebra review probability review Gaussian distributionLearning theory |
2016/07/05 | Dong Wang | Linear models | slides NG's lecture 1 NG's lecture 2 |
2016/07/08 | Dong Wang | Neural networks | slides |
2016/07/11 | Dong Wang | Deep learning (1) | slides NIPS 2015 tutorial |
2016/07/12 | Dong Wang | Deep learning (2) | slides Li Deng's ICASSP16 keynote |
2016/07/13 | Caixia Wang | Kernel methods | Kernel method book pattern recognition 6-7 |
2016/07/ | Dong Wang | Unsupervised learning | |
2016/07/ | Dong Wang | Probabilistic learning theory | |
2016/07/ | Yang Feng | Graphical model: Bayesian approach | |
2016/07/ | Yang Feng | Graphical model: Random field | |
2016/07/ | Dong Wang | No parametric models | Gaussian process |
2016/07/ | Dong Wang | Reinforcement learning | |
2016/07/ | Maoning Wang | Evolutionary learning | |
2016/07/ | Dong Wang | Optimization | Convex optimization I Convex optimization II |