“2016 Summer Seminar for Machine learning”版本间的差异
来自cslt Wiki
第12行: | 第12行: | ||
| 2016/07/ ||Dong Wang || Neural networks || [http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt3.%20Neural%20Network.pptx slides] | | 2016/07/ ||Dong Wang || Neural networks || [http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt3.%20Neural%20Network.pptx slides] | ||
|- | |- | ||
− | | 2016/07/ ||Dong Wang || Deep learning (1)|| | + | | 2016/07/ ||Dong Wang || Deep learning (1)|| [http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf NIPS 2015 tutorial] |
|- | |- | ||
| 2016/07/ ||Dong Wang || Deep learning (2)|| | | 2016/07/ ||Dong Wang || Deep learning (2)|| |
2016年7月11日 (一) 00:04的版本
- Location: FIT-1-304
Date | Speaker | Title | Materials |
---|---|---|---|
2016/07/04 | Dong Wang | Machine learning overview | slidesAlgebra review probability review Gaussian distributionLearning theory |
2016/07/05 | Dong Wang | Linear models | slides NG's lecture 1 NG's lecture 2 |
2016/07/ | Dong Wang | Neural networks | slides |
2016/07/ | Dong Wang | Deep learning (1) | NIPS 2015 tutorial |
2016/07/ | Dong Wang | Deep learning (2) | |
2016/07/ | Dong Wang | Unsupervised learning | |
2016/07/ | Caixia Wang | Kernel methods | Kernel method book pattern recognition 6-7 |
2016/07/ | Dong Wang | Probabilistic learning theory | |
2016/07/ | Yang Feng | Graphical model: Bayesian approach | |
2016/07/ | Yang Feng | Graphical model: Random field | |
2016/07/ | Dong Wang | No parametric models | Gaussian process |
2016/07/ | Dong Wang | Reinforcement learning | |
2016/07/ | Maoning Wang | Evolutionary learning | |
2016/07/ | Dong Wang | Optimization | Convex optimization I Convex optimization II |