“2016 Summer Seminar for Machine learning”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第24行: 第24行:
 
| 2016/07/    ||Dong Wang  || Unsupervised learning ||  
 
| 2016/07/    ||Dong Wang  || Unsupervised learning ||  
 
|-
 
|-
| 2016/07/    ||Dong Wang  || No parametric models || [http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf Gaussian process]
+
| 2016/07/    ||Dong Wang  || Non parametric models || [http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf Gaussian process]
 
|-
 
|-
 
| 2016/07/    ||Dong Wang  || Reinforcement learning ||  
 
| 2016/07/    ||Dong Wang  || Reinforcement learning ||  

2016年7月14日 (四) 02:29的版本

  • Location: FIT-1-304


Date Speaker Title Materials
2016/07/04 Dong Wang Machine learning overview slidesvideo(part 2)Algebra review probability review Gaussian distributionLearning theory
2016/07/05 Dong Wang Linear models slides NG's lecture 1 NG's lecture 2
2016/07/08 Dong Wang Neural networks slides
2016/07/11 Dong Wang Deep learning (1) slides NIPS 2015 tutorial
2016/07/12 Dong Wang Deep learning (2) slides Li Deng's ICASSP16 keynote
2016/07/13 Caixia Wang Kernel methods slides Kernel method book pattern recognition 6-7
2016/07/ Yang Feng Graphical model: Bayesian approach
2016/07/ Yang Feng Graphical model: Random field
2016/07/ Dong Wang Unsupervised learning
2016/07/ Dong Wang Non parametric models Gaussian process
2016/07/ Dong Wang Reinforcement learning
2016/07/ Maoning Wang Evolutionary learning
2016/07/ Dong Wang Optimization Convex optimization I Convex optimization II