“2016 Summer Seminar for Machine learning”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第6行: 第6行:
 
! Date !! Speaker!! Title !! Materials   
 
! Date !! Speaker!! Title !! Materials   
 
|-
 
|-
| 2016/07/04  ||Dong Wang  || Machine learning overview || [http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt1.%20Overview%20of%20Machine%20Learning ppt][http://cs229.stanford.edu/section/cs229-linalg.pdf Algebra review] [http://cs229.stanford.edu/section/cs229-prob.pdf probability review] [http://cs229.stanford.edu/section/gaussians.pdf Gaussian distribution][http://cs229.stanford.edu/notes/cs229-notes4.pdf Learning theory]
+
| 2016/07/04  ||Dong Wang  || Machine learning overview || [http://wangd.cslt.org/talks/seminar/2016-sum-ml/chpt1.%20Overview%20of%20Machine%20Learning pdf][http://cs229.stanford.edu/section/cs229-linalg.pdf Algebra review] [http://cs229.stanford.edu/section/cs229-prob.pdf probability review] [http://cs229.stanford.edu/section/gaussians.pdf Gaussian distribution][http://cs229.stanford.edu/notes/cs229-notes4.pdf Learning theory]
 
|-
 
|-
| 2016/07/05  ||Dong Wang  || Linear models || [http://cs229.stanford.edu/notes/cs229-notes1.pdf NG's lecture 1] [http://cs229.stanford.edu/notes/cs229-notes2.pdf AG's lecture 2]
+
| 2016/07/05  ||Dong Wang  || Linear models || [http://cs229.stanford.edu/notes/cs229-notes1.pdf NG's lecture 1] [http://cs229.stanford.edu/notes/cs229-notes2.pdf NG's lecture 2]
 
|-
 
|-
 
| 2016/07/    ||Dong Wang  || Neural networks ||  
 
| 2016/07/    ||Dong Wang  || Neural networks ||  

2016年7月4日 (一) 13:09的版本

  • Location: FIT-1-304


Date Speaker Title Materials
2016/07/04 Dong Wang Machine learning overview pdfAlgebra review probability review Gaussian distributionLearning theory
2016/07/05 Dong Wang Linear models NG's lecture 1 NG's lecture 2
2016/07/ Dong Wang Neural networks
2016/07/ Dong Wang Deep learning (1)
2016/07/ Dong Wang Deep learning (2)
2016/07/ Dong Wang Unsupervised learning
2016/07/ Caixia Wang Kernel methods
2016/07/ Dong Wang Probabilistic learning theory
2016/07/ Yang Feng Graphical model: Bayesian approach
2016/07/ Yang Feng Graphical model: Random field
2016/07/ Dong Wang No parametric models Gaussian process
2016/07/ Dong Wang Reinforcement learning
2016/07/ Maoning Wang Evolutionary learning
2016/07/ Dong Wang Optimization Convex optimization I Convex optimization II