2024-07-29

来自cslt Wiki
跳转至: 导航搜索
People This Week Next Week Task Tracking (DeadLine)
Dong Wang
  • AIGraph slides done
  • Check for thermal face recognition paper
  • Quick check for Guyue's paper
Lantian Li
  • GPU status [1]
  • AI graph
    • Slides checking (50/50)
    • High school handbook (12/40)
  • High school handbook (20/40)
Ying Shi
  • Finish training U-Net based text-enroll keyword spotting
  • continue work on cohort conditional-chain group work
Zhenghai You
  • Complete the Reproduce of IRA[2]
  • Design a new TSE structure using U-NET and G&L Transformer (idea form sepreformer)
  • Write the work content for Huawei's first phase as ICCIP2024
Junming Yuan
  • Reimplementation of the Hubert baseline:
    • fix some bugs
    • the base model for the 1st iteration is finished on hawk02.
    • the base model for the 2nd iteration need to migrate to dragon03(in progress)
    • Beginner's Guide for pretraining Hubert with fairseq:[3]
Chen Chen
Xiaolou Li
  • LRS-30h PALR2 (4 epoch result)
    • VSR: 29.74%
    • Refinement: 29.45%
  • Calibration Test [4]
Zehua Liu
  • LRS3-30h: VSP-LLM - cluster(WER : 28.11%) < VSP-LLM (WER : 29.1%)
  • LRS3-30h: VSP-LLM - cluster + adaptive_mask(WER : 27.75%) < VSP-LLM (WER : 29.1%)
  • LRS3-30h: In-Context-learning (still training)
Pengqi Li
  • Trianed a new attention pooling with condition(Analysis ongoing).[5]
Wan Lin
  • Neural Scoring
    • First draft of paper finished [6]
    • Supplement experimental results
Tianhao Wang
  • SoundFilter weekly report
  • SoundFilter reproduce
Zhenyu Zhou
  • Clip Norm results[7]
Junhui Chen
  • Neural Scoring:
    • Paper Writing (1st Ver. finished with LW)
    • Supplement the experiments
Jiaying Wang
  • paper reading(report today)
  • live broadcast
Yu Zhang
Wenqiang Du
Yang Wei
  • AIBabel KWS
    • Prepare negative test data (from cn-celeb, aishell-4)
Lily
  • Prepare for high shcool summer trip class(last Sunday)
  • Accident & get sick
Turi
Yue Gu
  • complete and revise the DPR paper
Qi Qu
  • AED:
    • AudioSet data prepared.
    • Positive samples of "cries" collected and to be annotated.
  • KWS:
    • B6-based service optimized with memory consumption considerably reduced (~600MB v.s. formerly ~2GB).