2013-06-21
来自cslt Wiki
目录
Data sharing
- LM count files still undelivered!
DNN progress
Experiments
- sparse DNN: sticky training (retrain the nnet while keeping the sparsness)
zero small values(test set: 1900), with extremely sparseness:
threshold | 0 | 0.2 | 0.3 | 0.4 | 0.5 |
---|---|---|---|---|---|
shrinkage% | 0.0 | 66.4 | 81.6 | 0.90 | 0.94 |
without sticky: WER | 7.55 | 9.46 | 53.23 | 98.99 | - |
with sticky: WER | 7.55 | 7.56 | 7.87 | 8.81 | 9.87 |
Conclusion: The extremely sparse network can largely pertain the performance of DNN. The structure seems more important than the parameter tuning based on the structure.
- fixed-point DNN forwarding
- Migrating the Atlas lib to ARM. Done.
- Atlas/mkl independent implementation. Done. The non Atlas/MKL solution is much slower, but with sparse DNN, the difference is decreased.
- Working on comparison of Atlas and non-Atlas on ARM.
Tencent exps
- :本月DNN方面,一开始大规模数据(6000小时)训练工作,现得到迭代7次结果如下:
- Old Baseline New Baeline DNN-1000小时 DNN-6000小时
- 1900 8.4 6.8 4.3 3.9
- 2044 22.4 15.7 12.7 10.7
- online1 35.6 32.7 25.8 24.6
- online2 29.6 27.3 22.1 21.1
- map 24.5 15.8 13.4 8.7
- general 36 25.1 19.3 15.9
- :DNN+序列化dt,未使用Kaldi代码,重写中,接近完成,鉴于其中包含的各种trick,得到有效结果的时间不好预估。
- :调研二阶优化方式,LBFGS,Hessian Free算法,以及异步SGD算法,实现多机并行化实现。
- :调研RNN相关的Long Short-Term Memery算法在ASR实现。
GPU & CPU merge
- Hold
RNN LM progress
- some errors found in the training process
- checking debugbing
Embedded progress
- Status:
- ARM debug system is ready. Native compiling is possible.
- PS system: SGE-based large scale training is ready.
- Kaldi system: ARM migration is done.
- Semi continuous model based on the Tencent 400h data is done.
Sys | WER | RT(on server) | RT (on arm) |
---|---|---|---|
SP model | 8.81 | 0.07 | 0.91 |
Tencent(cnt.) | 5.04 | 0.31 | - |
Tencent(semi.) | 6.26 | 0.07 | 0.83 |
- To be done
- sparse DNN based Kaldi engine
- sparse DNN based PS engine