Xingchao work

来自cslt Wiki
2015年3月26日 (四) 08:18Xingchao讨论 | 贡献的版本

跳转至: 导航搜索

Paper Recommendation

Pre-Trained Multi-View Word Embedding.[1]

Learning Word Representation Considering Proximity and Ambiguity.[2]

Continuous Distributed Representations of Words as Input of LSTM Network Language Model.[3]

WikiRelate! Computing Semantic Relatedness Using Wikipedia.[4]

Japanese-Spanish Thesaurus Construction Using English as a Pivot[5]

Chaos Work

Temp Result Report

Result Report :

I have already train two sphere model. The first model I change hierachical softmax paramters to standard sphere. And another model is just change word vectors to standard sphere. The result shows the performance change hierachical parameters is almost 0% correct rate. So I will not write it in our result report.

Use the norm vector :

  Linear Transform :
     test :     1 correct     5 correct
                  10.25%        24.82%
     train :    
            
  Sphere Transform:
     test :       24.22%        41.01%
     train :       

Use original vector :

  Linear Transform:
     test :       26.83%        44.42%
     train : 
  Sphere Transform :
     test :       28.74%        46.73%



SSA Model

  Build 2-dimension SSA-Model.
     Start at : 2014-09-30 <--> End at : 2014-10-02 <--> Result is : 
        27.83%   46.53%     2  classify
  Test 25,50-dimension SSA-Model for transform
     Start at : 2014-10-02 <--> End at : 2014-10-03 <--> Result is : 
        27.9%    46.6%      1  classify
        27.83%   46.53%     2  classify
        27.43%   46.53%     3  classify
        25.52%   45.83%     4  classify
        25.62%   45.83%     5  classify
        22.81%   42.51%     6  classify
        11.96%   27.43%     50 classify
     Reason explain : There are some points doesn't belong to class which training data belongs to. So the
                      transform doesn't share correct transform matrix. 
                      The method we want to update is just cluster the training data, and the test 
                      the performance.
  Simple cluster by 2 class.
        23.51%   43.21%     2  classify
  Train set as test set      
     Start at : 2014-10-06 <--> End at : 2014-10-08 <--> Result is : 
        56.91%   72.16%     Simple 1 classify
        63.98%   77.57%     Simple 2 classify
        68.49%   81.25%     Simple 4 classify
        71.43%   83.21%     Simple 5 classify
        76.71%   87.07%     Simple 6 classify
  Different compute state :
     Start at : 2014-10-10 <--> End at : 2014-10-10 <--> Result is :
        23.51%   40.20%     7 classify
  Test All-Belong SSA model for transform
     Start at : 2014-10-02

SEMPRE Research

Work Schedule

  Download SEMPRE toolkit.
  Start at : 2014-09-30

Paper related

  Semantic Parsing via Paraphrasing [6]

Knowledge Vector

  Pre-process corpus.
     Start at : 2014-09-30.
        Use toolkit Wikipedia_Extractor [7] waiting
     End at : 2014-10-03  Result : 
        Original corpus is about 47G and after preprocessing the corpus is almost 17.8G
  Analysis corpus, and training word2vec by wikipedia.
     Start at : 2014-10-03.
     Design Data Structure : 
        { title : "", content : {Abs : [[details],[related link]], h2 : []}, category : []}

Moses translation model

  Pre-process corpus, remove the sentence which contains rarely seen words.
      Start at : 2014-09-30 <--> End at : 2014-10-02  <--> Result : 
      Original lines is 8973724, Clean corpus (remove sentences which contain words less than 10) is 6033397
  Train Model.
      Start at : 2014-10-02 <--> End at : 2014-10-05
  Tuning Model.
      Start at : 2014-10-05 <--> End at : 2014-10-10
  Result Report :
      57G phrase in old translation system, 41G phrase in new system. And then testing load speed.

Non Linear Transform Testing

Work Schedule

  Re-train best mse for test data.
      Start at : 2014-10-01 <-->  End at : 2014-10-02 <--> Result : 
      Performance is inconsistent to expectations. Best result for Non-Linear is 1e-2.
  Hidden Layer : 400                      15.57%                    29.14%              995
                 600                      19.99%                    36.08%              995
                 800                      23.32%                    39.60%              995
                1200                      19.19%                    35.08%              995
                1400                      17.09%                    32.06%              995
      Result : According to the result, I will test 800, 1200, 1400, and 1600 hidden layer.

New Approach

Date-3-26

 Note: Run Wiki Vector Training Step.
 Pre-processing corpus 20-Newsgroups & Reuters-21578