Ling Luo 2015-08-31

来自cslt Wiki
2015年9月2日 (三) 02:19Luoling讨论 | 贡献的版本

跳转至: 导航搜索

Works in the past:

1.Finish training word embeddings via 5 models :

using EnWiki dataset(953M):

CBOW,Skip-Gram

using text8 dataset(95.3M):

CBOW,Skip-Gram,C&W,GloVe,LBL and Order(count-based)

2.Use tasks to measure quality of the word vectors with various dimensions(10~200):

word similarity(ws)

the TOEFL set:small dataset

analogy task:9K semantic and 10.5K syntactic analogy questions

text classification:IMDB dataset——pos&neg,use unlabeled dataset to train word embeddings

sentence-level sentiment classification (based on convolutional neural networks)

part-of-speech tagging

Works in this week:

word similarity(ws): try to use different similarity calculation method

named entity recognition(ner)

focus on cnn