第十六章 典型网络结构
来自cslt Wiki
教学资料
扩展阅读
- AI100问:什么是卷积神经网络?[1]
- AI100问:什么是循环神经网络?[2]
- AI100问:什么是自编码器?[3]
- 维基百科:多层感知器[4][5]
- 维基百科:卷积神经网络[6][7]
- 维基百科:循环神经网络[8][9]
- 维基百科:自编码器[10][11]
- 机器之心:卷积神经网络 [12]
视频展示
- 全连接网络展示 [13]
- 全连接层展示 [14]
- Disclaimer CNN 展示 [15]
- CNN_Otavio_Good 的CNN展示 [16]
- 知多少:什么是循环神经网络[17]
- 知多少:什么是卷积神经网络[18]
演示链接
- Andrej Karpathy's CNN demo [19]
- Neural Net demo [20]
- Neural Net training demo [21]
- Quick draw, and let NN guess [22]
开发者资源
高级读者
- Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" [26]
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories [27]
- Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities". Proceedings of the National Academy of Sciences. 79 (8): 2554–2558. [28]
- Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. [29]
- Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". Neural-Network Models of Cognition - Biobehavioral Foundations. Advances in Psychology. Neural-Network Models of Cognition. Vol. 121. pp. 471–495. [30]
- Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In Advances in neural information processing systems 6 (pp. 3-10). [31]
- 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [32]
- Christopher M. Bishop, Neural Networks for Pattern Recognition [33]
- Christopher M. Bishop, Pattern Recognition and Machine Learning [34]