“第二十一章 车牌识别”版本间的差异
来自cslt Wiki
第15行: | 第15行: | ||
==视频展示== | ==视频展示== | ||
− | * YOLO visulaization [http://aigraph.cslt.org/courses/21/ | + | * YOLO visulaization [http://aigraph.cslt.org/courses/21/yolo2-plate.mp4] |
* YOLO-v3 [http://aigraph.cslt.org/courses/21/YOLOv3-show.mp4] | * YOLO-v3 [http://aigraph.cslt.org/courses/21/YOLOv3-show.mp4] | ||
2023年8月13日 (日) 01:53的版本
教学资料
扩展阅读
视频展示
演示链接
开发者资源
高级读者
- Arafat M Y, Khairuddin A S M, Khairuddin U, et al. Systematic review on vehicular licence plate recognition framework in intelligent transport systems[J]. IET Intelligent Transport Systems, 2019, 13(5): 745-755. [16]
- Srikanth P, Kumar A. Automatic vehicle number plate detection and recognition systems: Survey and implementation[M]//Autonomous and Connected Heavy Vehicle Technology. Academic Press, 2022: 125-139. [17]
- Zherzdev S, Gruzdev A. Lprnet: License plate recognition via deep neural networks[J]. arXiv preprint arXiv:1806.10447, 2018. [18]
- Xie L, Ahmad T, Jin L, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517. [19]
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi You only look once: unified, real-time object detection Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016), pp. 779-788 [20]