“第二十一章 车牌识别”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
扩展阅读
第5行: 第5行:
 
*[http://aigraph.cslt.org/courses/21/course-21.pptx 课件]
 
*[http://aigraph.cslt.org/courses/21/course-21.pptx 课件]
 
*小清爱提问:机器如何识别车牌[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485046&idx=1&sn=4ca0402b4bc576d140c5d03d79879431&chksm=c3080cb4f47f85a2d5e73c1b4039f44f288a7c66d03d2be203dd1c33516dc7795bf286e2faaa&scene=178#rd]
 
*小清爱提问:机器如何识别车牌[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485046&idx=1&sn=4ca0402b4bc576d140c5d03d79879431&chksm=c3080cb4f47f85a2d5e73c1b4039f44f288a7c66d03d2be203dd1c33516dc7795bf286e2faaa&scene=178#rd]
*小清爱提问:什么是YOLO模型[]
+
*小清爱提问:目标检测中的YOLO网络长什么样?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247489867&idx=1&sn=0daa55f14d6ccd8e201f3de4533a791f&chksm=c3081389f47f9a9fa4fcc90aaba0432cfb8aed471ef95574dc856c3619f699cc0f578c58e45a&scene=178&cur_album_id=3052762821081645063#rd]
  
  

2023年8月13日 (日) 01:52的版本


教学资料

  • 教学参考
  • 课件
  • 小清爱提问:机器如何识别车牌[1]
  • 小清爱提问:目标检测中的YOLO网络长什么样?[2]


扩展阅读

  • AI100问:什么是YOLO模型 [3]
  • AI100问:机器如何识别车牌[4]

视频展示

  • YOLO visulaization [5]
  • YOLO-v3 [6]


演示链接

  • 旷世科技在线演示[7]
  • 云脉展示[8]
  • 薪火科技[9]
  • DTK车牌识别在线演示[10]
  • Tanar Automatic Number Plate Reader System [11]


开发者资源

  • OpenCV 车牌识别流程和样例程序[12][13]
  • 基于Yolo v4的车牌识别 [14]
  • ALPR in Unscontrained Scenarios [15]


高级读者

  • Arafat M Y, Khairuddin A S M, Khairuddin U, et al. Systematic review on vehicular licence plate recognition framework in intelligent transport systems[J]. IET Intelligent Transport Systems, 2019, 13(5): 745-755. [16]
  • Srikanth P, Kumar A. Automatic vehicle number plate detection and recognition systems: Survey and implementation[M]//Autonomous and Connected Heavy Vehicle Technology. Academic Press, 2022: 125-139. [17]
  • Zherzdev S, Gruzdev A. Lprnet: License plate recognition via deep neural networks[J]. arXiv preprint arXiv:1806.10447, 2018. [18]
  • Xie L, Ahmad T, Jin L, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517. [19]
  • J. Redmon, S. Divvala, R. Girshick, A. Farhadi You only look once: unified, real-time object detection Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016), pp. 779-788 [20]