“第十二章 机器学习基本流程”版本间的差异
来自cslt Wiki
(→扩展阅读) |
(→扩展阅读) |
||
第22行: | 第22行: | ||
* 百度百科:奥卡姆剃刀[https://baike.baidu.com/item/%E5%A5%A5%E5%8D%A1%E5%A7%86%E5%89%83%E5%88%80%E5%8E%9F%E7%90%86/10900565][http://baike.baidu.com/l/HUkXrXzT] | * 百度百科:奥卡姆剃刀[https://baike.baidu.com/item/%E5%A5%A5%E5%8D%A1%E5%A7%86%E5%89%83%E5%88%80%E5%8E%9F%E7%90%86/10900565][http://baike.baidu.com/l/HUkXrXzT] | ||
* 维基百科:过拟合[http://aigraph.cslt.org/courses/12/Overfitting.pdf][http://aigraph.cslt.org/courses/12/過適.pdf] | * 维基百科:过拟合[http://aigraph.cslt.org/courses/12/Overfitting.pdf][http://aigraph.cslt.org/courses/12/過適.pdf] | ||
− | * 维基百科:GPT-3 [http://aigraph.cslt.org/courses/12/GPT-3-zh.pdf][http://aigraph.cslt.org/courses/ | + | * 维基百科:GPT-3 [http://aigraph.cslt.org/courses/12/GPT-3-zh.pdf][http://aigraph.cslt.org/courses/12/GPT-3-zh.pdf/] |
* 机器之心:当谈论机器学习中的公平公正时,我们该谈论些什么?[https://www.jiqizhixin.com/articles/2020-06-03-11] | * 机器之心:当谈论机器学习中的公平公正时,我们该谈论些什么?[https://www.jiqizhixin.com/articles/2020-06-03-11] | ||
* 机器之心:数据增强 [https://www.jiqizhixin.com/articles/2019-12-04-10] | * 机器之心:数据增强 [https://www.jiqizhixin.com/articles/2019-12-04-10] |
2023年8月8日 (二) 09:42的版本
教学资料
扩展阅读
- 维基百科:没有免费的午餐定理 [5]
- 维基百科:梯度下降法[6][7]
- 百度百科:梯度下降法[8][9]
- 知乎:梯度下降法[10]
- 知乎:小批量梯度下降法[11]
- 知乎:动量梯度下降法[12][]
- 维基百科:模拟退火算法 [13][14]
- 百度百科:模拟退火算法[15][16]
- 知乎:模拟退火详解 [17]
- 维基百科:牛顿法 [18][19]
- 维基百科:奥卡姆剃刀[20][21]
- 百度百科:奥卡姆剃刀[22][23]
- 维基百科:过拟合[24][25]
- 维基百科:GPT-3 [26][27]
- 机器之心:当谈论机器学习中的公平公正时,我们该谈论些什么?[28]
- 机器之心:数据增强 [29]
- 知乎:数据增强 [30][31]
- 什么是模型预训练[32]
- 迁移学习 [33]
视频展示
演示链接
开发者资源
高级读者
- 王东,机器学习导论,第一章“绪论”,第十一章“优化方法”[38]
- Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390 [39]
- Sebastian Ruder, An overview of gradient descend algorithms,2017 [40]
- Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). "Optimization by Simulated Annealing". Science. 220 (4598): 671–680. [41]
- Brown et al., Language Models are Few-Shot Learners [42]