“第三十九章 生物拟态证据”版本间的差异
来自cslt Wiki
(以“==教学资料== * 教学参考 * [http://aigraph.cslt.org/courses/39/course-39.pptx 课件] * 小清爱提问:机器学习如何发现生物...”为内容创建页面) |
|||
第10行: | 第10行: | ||
* AI100问:机器学习如何发现生物拟态证据?[http://aigraph.cslt.org/ai100/AI-100-28-机器学习如何发现生物拟态证据.pdf] | * AI100问:机器学习如何发现生物拟态证据?[http://aigraph.cslt.org/ai100/AI-100-28-机器学习如何发现生物拟态证据.pdf] | ||
* 维基百科:生物拟态[http://aigraph.cslt.org/courses/39/拟态.pdf][http://aigraph.cslt.org/courses/39/Mimicry.pdf] | * 维基百科:生物拟态[http://aigraph.cslt.org/courses/39/拟态.pdf][http://aigraph.cslt.org/courses/39/Mimicry.pdf] | ||
− | + | * 维基百科:Müllerian 拟态 [http://aigraph.cslt.org/courses/39/Müllerian_mimicry.pdf] | |
+ | * 对比损失训练准则 [https://smilelingyong.github.io/2019/05/23/Contrastive-Loss-contrast-loss-function-and-gradient-calculation/] | ||
==视频展示== | ==视频展示== | ||
第18行: | 第19行: | ||
* 会拟态的动物合集 [https://www.bilibili.com/video/BV1G5411t7DR?spm_id_from=333.337.search-card.all.click] | * 会拟态的动物合集 [https://www.bilibili.com/video/BV1G5411t7DR?spm_id_from=333.337.search-card.all.click] | ||
* 拟态专家大赏 [https://www.bilibili.com/video/BV1Zh411B7bu?spm_id_from=333.337.search-card.all.click] | * 拟态专家大赏 [https://www.bilibili.com/video/BV1Zh411B7bu?spm_id_from=333.337.search-card.all.click] | ||
− | |||
− | |||
第27行: | 第26行: | ||
==开发者资源== | ==开发者资源== | ||
− | + | * Dataset [https://datadryad.org/stash/dataset/doi:10.5061/dryad.2hp1978] | |
==高级读者== | ==高级读者== | ||
+ | |||
+ | * Hoyal Cuthill J F, Guttenberg N, Ledger S, et al. Deep learning on butterfly phenotypes tests evolution’s oldest mathematical model[J]. Science advances, 2019, 5(8): eaaw4967. [https://www.science.org/doi/pdf/10.1126/sciadv.aaw4967] | ||
+ | * MuÈller, F. Ituna and Thyridia; a remarkable case of mimicry in butteries. Trans. Ent. Soc. Lond. 1879, | ||
+ | * Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular biology and evolution, 1987, 4(4): 406-425. [https://academic.oup.com/mbe/article-pdf/4/4/406/11167444/7sait.pdf] | ||
+ | * Richard M.MerrillChris D.Jiggins, Müllerian Mimicry: Sharing the Load Reduces the Legwork[https://www.sciencedirect.com/science/article/pii/S096098220901389X] |
2022年8月22日 (一) 08:19的最后版本
教学资料
扩展阅读
视频展示
演示链接
开发者资源
- Dataset [10]
高级读者
- Hoyal Cuthill J F, Guttenberg N, Ledger S, et al. Deep learning on butterfly phenotypes tests evolution’s oldest mathematical model[J]. Science advances, 2019, 5(8): eaaw4967. [11]
- MuÈller, F. Ituna and Thyridia; a remarkable case of mimicry in butteries. Trans. Ent. Soc. Lond. 1879,
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular biology and evolution, 1987, 4(4): 406-425. [12]
- Richard M.MerrillChris D.Jiggins, Müllerian Mimicry: Sharing the Load Reduces the Legwork[13]