“第三十二章 AI游戏”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“==教学资料== * 教学参考 * [http://aigraph.cslt.org/courses/32/course-32.pptx 课件] * 小清爱提问:阿尔法狗和深蓝算法有...”为内容创建页面)
 
第3行: 第3行:
 
* [[教学参考-32|教学参考]]
 
* [[教学参考-32|教学参考]]
 
* [http://aigraph.cslt.org/courses/32/course-32.pptx 课件]
 
* [http://aigraph.cslt.org/courses/32/course-32.pptx 课件]
* 小清爱提问:阿尔法狗和深蓝算法有什么不同? [https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485815&idx=1&sn=e7f80182a71b1820fd52266faef4f45e&chksm=c30803b5f47f8aa3ae32e138b67447318fd64c1b42837447073e58de7241cd348da5aa136a17&scene=178#rd]
+
* 小清爱提问:机器如何学会打游戏? ? [https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485815&idx=1&sn=e7f80182a71b1820fd52266faef4f45e&chksm=c30803b5f47f8aa3ae32e138b67447318fd64c1b42837447073e58de7241cd348da5aa136a17&scene=178#rd]
  
 
==扩展阅读==
 
==扩展阅读==
  
 
+
*AI 100问:机器如何学会打游戏? [[http://aigraph.cslt.org/ai100/AI-100-82-机器如何学会打游戏.pdf]
 +
* OpenAI 捉迷藏游戏[https://openai.com/blog/emergent-tool-use/]
 +
* DeepMind AlphaStar 博客  [https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii]
  
 
==视频展示==
 
==视频展示==
  
 +
* OpenAI Hide and Seek [http://aigraph.cslt.org/courses/32/Multi-Agent.mp4]
  
 
==演示链接==
 
==演示链接==
 
 
  
  
第25行: 第26行:
  
 
* Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533. [https://daiwk.github.io/assets/dqn.pdf]
 
* Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533. [https://daiwk.github.io/assets/dqn.pdf]
*
+
* Baker B, Kanitscheider I, Markov T, et al. Emergent tool use from multi-agent autocurricula[J]. arXiv preprint arXiv:1909.07528, 2019. [https://arxiv.org/pdf/1909.07528]
 +
* Arulkumaran K, Cully A, Togelius J. Alphastar: An evolutionary computation perspective[C]//Proceedings of the genetic and evolutionary computation conference companion. 2019: 314-315. [https://arxiv.org/pdf/1902.01724]

2022年8月13日 (六) 08:29的版本

教学资料

扩展阅读

  • AI 100问:机器如何学会打游戏? [[2]
  • OpenAI 捉迷藏游戏[3]
  • DeepMind AlphaStar 博客 [4]

视频展示

  • OpenAI Hide and Seek [5]

演示链接

开发者资源

高级读者

  • Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533. [6]
  • Baker B, Kanitscheider I, Markov T, et al. Emergent tool use from multi-agent autocurricula[J]. arXiv preprint arXiv:1909.07528, 2019. [7]
  • Arulkumaran K, Cully A, Togelius J. Alphastar: An evolutionary computation perspective[C]//Proceedings of the genetic and evolutionary computation conference companion. 2019: 314-315. [8]