“第二十一章 车牌识别”版本间的差异
来自cslt Wiki
(以“ ==教学资料== *教学参考 *[http://aigraph.cslt.org/courses/21/course-21.pptx 课件] *小清爱提问:机器如何识别车牌[https://...”为内容创建页面) |
|||
第5行: | 第5行: | ||
*[http://aigraph.cslt.org/courses/21/course-21.pptx 课件] | *[http://aigraph.cslt.org/courses/21/course-21.pptx 课件] | ||
*小清爱提问:机器如何识别车牌[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485046&idx=1&sn=4ca0402b4bc576d140c5d03d79879431&chksm=c3080cb4f47f85a2d5e73c1b4039f44f288a7c66d03d2be203dd1c33516dc7795bf286e2faaa&scene=178#rd] | *小清爱提问:机器如何识别车牌[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485046&idx=1&sn=4ca0402b4bc576d140c5d03d79879431&chksm=c3080cb4f47f85a2d5e73c1b4039f44f288a7c66d03d2be203dd1c33516dc7795bf286e2faaa&scene=178#rd] | ||
+ | *小清爱提问:什么是YOLO模型[] | ||
==扩展阅读== | ==扩展阅读== | ||
− | * | + | * AI100问:什么是YOLO模型 |
+ | * AI100问:机器如何识别车牌 | ||
==视频展示== | ==视频展示== | ||
− | * | + | * YOLO-v3 [http://aigraph.cslt.org/courses/21/YOLOv3-show.mp4] |
− | * | + | * YOLO-v2 应用于车牌定位 [http://aigraph.cslt.org/courses/21/YOLO2-plate.mp4] |
==演示链接== | ==演示链接== | ||
第25行: | 第27行: | ||
==开发者资源== | ==开发者资源== | ||
− | * | + | * |
− | * | + | * |
− | + | ||
第33行: | 第35行: | ||
==高级读者== | ==高级读者== | ||
− | * | + | * Arafat M Y, Khairuddin A S M, Khairuddin U, et al. Systematic review on vehicular licence plate recognition framework in intelligent transport systems[J]. IET Intelligent Transport Systems, 2019, 13(5): 745-755. [https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-its.2018.5151] |
− | * | + | * Srikanth P, Kumar A. Automatic vehicle number plate detection and recognition systems: Survey and implementation[M]//Autonomous and Connected Heavy Vehicle Technology. Academic Press, 2022: 125-139. [https://www.sciencedirect.com/science/article/pii/B9780323905923000070] |
− | * | + | * Zherzdev S, Gruzdev A. Lprnet: License plate recognition via deep neural networks[J]. arXiv preprint arXiv:1806.10447, 2018. [https://arxiv.org/pdf/1806.10447] |
− | * | + | * Xie L, Ahmad T, Jin L, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517. [https://trid.trb.org/view/1500448] |
+ | * J. Redmon, S. Divvala, R. Girshick, A. Farhadi You only look once: unified, real-time object detection Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016), pp. 779-788 [https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf] |
2022年8月10日 (三) 02:11的版本
教学资料
扩展阅读
- AI100问:什么是YOLO模型
- AI100问:机器如何识别车牌
视频展示
演示链接
开发者资源
高级读者
- Arafat M Y, Khairuddin A S M, Khairuddin U, et al. Systematic review on vehicular licence plate recognition framework in intelligent transport systems[J]. IET Intelligent Transport Systems, 2019, 13(5): 745-755. [4]
- Srikanth P, Kumar A. Automatic vehicle number plate detection and recognition systems: Survey and implementation[M]//Autonomous and Connected Heavy Vehicle Technology. Academic Press, 2022: 125-139. [5]
- Zherzdev S, Gruzdev A. Lprnet: License plate recognition via deep neural networks[J]. arXiv preprint arXiv:1806.10447, 2018. [6]
- Xie L, Ahmad T, Jin L, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517. [7]
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi You only look once: unified, real-time object detection Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016), pp. 779-788 [8]