“第十七章 深度学习”版本间的差异
来自cslt Wiki
第1行: | 第1行: | ||
+ | ==教学资料== | ||
+ | *[[教学参考-17|教学参考]] | ||
+ | *[http://aigraph.cslt.org/courses/17/course-17.pptx 课件] | ||
+ | *小清爱提问:什么是深度学习(上)?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247487252&idx=1&sn=b3dac3e2afbe2b7ebff901ba358ee3e0&chksm=c30805d6f47f8cc02d8a284fb416c7767f815861f3656a605378bbf6caf718f11191637b81de&scene=178#rd | ||
+ | ] | ||
+ | *小清爱提问:什么是深度学习(下)?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247487260&idx=1&sn=c6ee1b8e09fcec9d9dfc96ddd06d874f&chksm=c30805def47f8cc8498b5c77c0ad720b45f02e78126fe9ed06e0a4465d3a970874b229692f29&scene=178#rd | ||
+ | ] | ||
− | + | ==扩展阅读== | |
− | |||
− | |||
− | + | ==视频展示== | |
+ | ==演示链接== | ||
+ | * ConvNetJS 深度神经网络演示 [https://cs.stanford.edu/people/karpathy/convnetjs/] | ||
+ | * ConvNetJS 代码 [https://github.com/karpathy/convnetjs] | ||
+ | * Leiden Demo for image classification [http://destiny.liacs.nl/] | ||
+ | * CNN explainer[https://poloclub.github.io/cnn-explainer/] | ||
* 可解释机器学习 [https://poloclub.github.io/] | * 可解释机器学习 [https://poloclub.github.io/] | ||
− | |||
− | |||
* Quick style transfer [https://tenso.rs/demos/fast-neural-style/] | * Quick style transfer [https://tenso.rs/demos/fast-neural-style/] | ||
第17行: | 第25行: | ||
* AutoWriter[https://cyborg.tenso.rs/] | * AutoWriter[https://cyborg.tenso.rs/] | ||
− | + | ||
+ | ==开发者资源== | ||
*Google developer courses [https://developers.google.com/machine-learning/crash-course?hl=zh-cn] | *Google developer courses [https://developers.google.com/machine-learning/crash-course?hl=zh-cn] | ||
+ | |||
+ | ==高级读者== | ||
+ | |||
+ | * Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" [https://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf] | ||
+ | * Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories [http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf] | ||
+ | * Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities". Proceedings of the National Academy of Sciences. 79 (8): 2554–2558. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238] | ||
+ | * Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. [https://doi.org/10.1016%2F0364-0213%2890%2990002-E] | ||
+ | * Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". Neural-Network Models of Cognition - Biobehavioral Foundations. Advances in Psychology. Neural-Network Models of Cognition. Vol. 121. pp. 471–495. [https://doi.org/10.1016%2Fs0166-4115%2897%2980111-2] | ||
+ | * Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In Advances in neural information processing systems 6 (pp. 3-10). [https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf] | ||
+ | * 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [http://mlbook.cslt.org] | ||
+ | * Christopher M. Bishop, Neural Networks for Pattern Recognition [https://www.amazon.com/Networks-Recognition-Advanced-Econometrics-Paperback/dp/0198538642] | ||
+ | * Christopher M. Bishop, Pattern Recognition and Machine Learning [https://www.amazon.com/-/es/Christopher-M-Bishop/dp/0387310738/ref=d_pd_sbs_sccl_3_3/143-3751675-4420139?pd_rd_w=2LB2s&content-id=amzn1.sym.3676f086-9496-4fd7-8490-77cf7f43f846&pf_rd_p=3676f086-9496-4fd7-8490-77cf7f43f846&pf_rd_r=XM3AJDN6MSM89CR1ZFV7&pd_rd_wg=QjVJC&pd_rd_r=10293f3a-8b44-4f6d-b6ee-9595387e2f18&pd_rd_i=0387310738&psc=1] |
2022年8月5日 (五) 10:24的版本
教学资料
- 教学参考
- 课件
- 小清爱提问:什么是深度学习(上)?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247487252&idx=1&sn=b3dac3e2afbe2b7ebff901ba358ee3e0&chksm=c30805d6f47f8cc02d8a284fb416c7767f815861f3656a605378bbf6caf718f11191637b81de&scene=178#rd
]
]
扩展阅读
视频展示
演示链接
- ConvNetJS 深度神经网络演示 [1]
- ConvNetJS 代码 [2]
- Leiden Demo for image classification [3]
- CNN explainer[4]
- 可解释机器学习 [5]
开发者资源
- Google developer courses [9]
高级读者
- Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" [10]
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories [11]
- Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities". Proceedings of the National Academy of Sciences. 79 (8): 2554–2558. [12]
- Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. [13]
- Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". Neural-Network Models of Cognition - Biobehavioral Foundations. Advances in Psychology. Neural-Network Models of Cognition. Vol. 121. pp. 471–495. [14]
- Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In Advances in neural information processing systems 6 (pp. 3-10). [15]
- 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [16]
- Christopher M. Bishop, Neural Networks for Pattern Recognition [17]
- Christopher M. Bishop, Pattern Recognition and Machine Learning [18]