“第十六章 典型网络结构”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第10行: 第10行:
 
* AI100问:什么是循环神经网络?[http://aigraph.cslt.org/ai100/AI-100-107-什么是循环神经网络.pdf]
 
* AI100问:什么是循环神经网络?[http://aigraph.cslt.org/ai100/AI-100-107-什么是循环神经网络.pdf]
 
* AI100问:什么是自编码器?[http://aigraph.cslt.org/ai100/AI-100-117-什么是自编码器.pdf]
 
* AI100问:什么是自编码器?[http://aigraph.cslt.org/ai100/AI-100-117-什么是自编码器.pdf]
 
+
* 维基百科:多层感知器[http://aigraph.cslt.org/courses/16/多层感知器.pdf][http://aigraph.cslt.org/courses/16/Multilayer_perceptron.pdf]
 +
* 维基百科:卷积神经网络[http://aigraph.cslt.org/courses/16/卷积神经网络.pdf][http://aigraph.cslt.org/courses/16/Convolutional_neural_network.pdf]
 +
* 维基百科:循环神经网络[http://aigraph.cslt.org/courses/16/循环神经网络.pdf][http://aigraph.cslt.org/courses/16/Recurrent_neural_network.pdf]
 +
* 维基百科:自编码器[http://aigraph.cslt.org/courses/16/自编码器.pdf][http://aigraph.cslt.org/courses/16/Autoencoder.pdf]
  
  
第37行: 第40行:
 
* Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. [https://doi.org/10.1016%2F0364-0213%2890%2990002-E]
 
* Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. [https://doi.org/10.1016%2F0364-0213%2890%2990002-E]
 
* Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". Neural-Network Models of Cognition - Biobehavioral Foundations. Advances in Psychology. Neural-Network Models of Cognition. Vol. 121. pp. 471–495.  [https://doi.org/10.1016%2Fs0166-4115%2897%2980111-2]
 
* Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". Neural-Network Models of Cognition - Biobehavioral Foundations. Advances in Psychology. Neural-Network Models of Cognition. Vol. 121. pp. 471–495.  [https://doi.org/10.1016%2Fs0166-4115%2897%2980111-2]
 +
* Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In Advances in neural information processing systems 6 (pp. 3-10). [https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf]
 
* 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [http://mlbook.cslt.org]
 
* 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [http://mlbook.cslt.org]
 
* Christopher M. Bishop, Neural Networks for Pattern Recognition [https://www.amazon.com/Networks-Recognition-Advanced-Econometrics-Paperback/dp/0198538642]
 
* Christopher M. Bishop, Neural Networks for Pattern Recognition [https://www.amazon.com/Networks-Recognition-Advanced-Econometrics-Paperback/dp/0198538642]
 
* Christopher M. Bishop, Pattern Recognition and Machine Learning [https://www.amazon.com/-/es/Christopher-M-Bishop/dp/0387310738/ref=d_pd_sbs_sccl_3_3/143-3751675-4420139?pd_rd_w=2LB2s&content-id=amzn1.sym.3676f086-9496-4fd7-8490-77cf7f43f846&pf_rd_p=3676f086-9496-4fd7-8490-77cf7f43f846&pf_rd_r=XM3AJDN6MSM89CR1ZFV7&pd_rd_wg=QjVJC&pd_rd_r=10293f3a-8b44-4f6d-b6ee-9595387e2f18&pd_rd_i=0387310738&psc=1]
 
* Christopher M. Bishop, Pattern Recognition and Machine Learning [https://www.amazon.com/-/es/Christopher-M-Bishop/dp/0387310738/ref=d_pd_sbs_sccl_3_3/143-3751675-4420139?pd_rd_w=2LB2s&content-id=amzn1.sym.3676f086-9496-4fd7-8490-77cf7f43f846&pf_rd_p=3676f086-9496-4fd7-8490-77cf7f43f846&pf_rd_r=XM3AJDN6MSM89CR1ZFV7&pd_rd_wg=QjVJC&pd_rd_r=10293f3a-8b44-4f6d-b6ee-9595387e2f18&pd_rd_i=0387310738&psc=1]

2022年8月5日 (五) 04:29的版本

教学资料

  • 教学参考
  • 课件
  • 小清爱提问:什么是卷积神经网络?[]
  • 小清爱提问:什么是循环神经网络?[]

扩展阅读

  • AI100问:什么是卷积神经网络?[1]
  • AI100问:什么是循环神经网络?[2]
  • AI100问:什么是自编码器?[3]
  • 维基百科:多层感知器[4][5]
  • 维基百科:卷积神经网络[6][7]
  • 维基百科:循环神经网络[8][9]
  • 维基百科:自编码器[10][11]


视频展示

  • 全连接网络展示 [12]
  • 全连接层展示 [13]
  • Disclaimer CNN 展示 [14]
  • CNN_Otavio_Good 的CNN展示 [15]

演示链接

  • Andrej Karpathy's CNN demo [16]
  • Neural Net demo [17]
  • Neural Net training demo [18]
  • Quick draw, and let NN guess [19]

开发者资源

  • Python package for neural nets: PyTorch [20] TensorFlow[21] NeuralLab[22]


高级读者

  • Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" [23]
  • Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories [24]
  • Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities". Proceedings of the National Academy of Sciences. 79 (8): 2554–2558. [25]
  • Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. [26]
  • Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". Neural-Network Models of Cognition - Biobehavioral Foundations. Advances in Psychology. Neural-Network Models of Cognition. Vol. 121. pp. 471–495. [27]
  • Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In Advances in neural information processing systems 6 (pp. 3-10). [28]
  • 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [29]
  • Christopher M. Bishop, Neural Networks for Pattern Recognition [30]
  • Christopher M. Bishop, Pattern Recognition and Machine Learning [31]