“C-STAR-database approach”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“=C-STAR 中华名人音频数据收集= 成员:王东,蔡云麒,周子雅,李开诚,陈浩林,程思潼,张鹏远,范悦 ===目标=== * Collect au...”为内容创建页面)
 
第28行: 第28行:
 
===项目报告===
 
===项目报告===
 
[http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/%E6%96%87%E4%BB%B6:C-STAR.pdf v1.0阶段性报告]
 
[http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/%E6%96%87%E4%BB%B6:C-STAR.pdf v1.0阶段性报告]
 +
 +
 +
 +
===参与文献===
 +
 +
* Zhang1 et al., "FULLY SUPERVISED SPEAKER DIARIZATION", 2018. [https://arxiv.org/pdf/1810.04719v1.pdf link]

2019年8月22日 (四) 00:53的版本

C-STAR 中华名人音频数据收集

成员:王东,蔡云麒,周子雅,李开诚,陈浩林,程思潼,张鹏远,范悦

目标

  • Collect audio data of 1,000 Chinese celebrities.
  • Automatically clip videoes through a pipeline including face detection, face recognition, speaker validation and speaker diarization.
  • Create a database.

未来计划

  • Augment the database to 10,000 people.
  • Build a model between SyncNet and Speaker_Diarization based on LSTM, which can learn the relationship of them.


基本方法

  • Tensorflow, PyTorch, Keras, MxNet 实现
  • 检测、识别人脸的RetinaFace和ArcFace模型,说话人识别的SyncNet模型,Speaker Diarization的UIS-RNN模型
  • 输入为目标主人公的视频、目标主人公的面部图片
  • 输出为该视频中主人公声音片段的时间标签


项目GitHub地址

celebrity-audio-collection

项目报告

v1.0阶段性报告


参与文献

  • Zhang1 et al., "FULLY SUPERVISED SPEAKER DIARIZATION", 2018. link