“第四十八章 开发癌症疫苗”版本间的差异
来自cslt Wiki
第9行: | 第9行: | ||
==扩展阅读== | ==扩展阅读== | ||
− | * WHO: 苗如何发挥作用? {https://www.who.int/zh/news-room/feature-stories/detail/how-do-vaccines-work | + | * WHO: 苗如何发挥作用? {https://www.who.int/zh/news-room/feature-stories/detail/how-do-vaccines-work] |
* 维基百科:免疫系统 [http://aigraph.cslt.org/courses/48/免疫系统.pdf] | * 维基百科:免疫系统 [http://aigraph.cslt.org/courses/48/免疫系统.pdf] | ||
* 维基百科:免疫疗法 [http://aigraph.cslt.org/courses/48/免疫治疗.pdf] | * 维基百科:免疫疗法 [http://aigraph.cslt.org/courses/48/免疫治疗.pdf] |
2022年8月25日 (四) 07:24的版本
教学资料
扩展阅读
- WHO: 苗如何发挥作用? {https://www.who.int/zh/news-room/feature-stories/detail/how-do-vaccines-work]
- 维基百科:免疫系统 [2]
- 维基百科:免疫疗法 [3]
视频展示
演示链接
开发者资源
高级读者
- Hu Z, Ott P A, Wu C J. Towards personalized, tumour-specific, therapeutic vaccines for cancer[J]. Nature Reviews Immunology, 2018, 18(3): 168-182. [8]
- Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32, 511–517 (2016).
- Calling cancer’s bluff with neoantigen vaccines, https://www.nature.com/articles/d41586-017-08706-3
- Ngoc Hieu Tran, Rui Qiao, Lei Xin, Xin Chen, Baozhen Shan,Ming Li, Personalized deep learning of individual immunopeptidomes to identify neoantigens for cancer vaccines, Nature Machine Intelligence, 2, pages764–771(2020) [9]