“第二十一章 车牌识别”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“ ==教学资料== *教学参考 *[http://aigraph.cslt.org/courses/21/course-21.pptx 课件] *小清爱提问:机器如何识别车牌[https://...”为内容创建页面)
 
第5行: 第5行:
 
*[http://aigraph.cslt.org/courses/21/course-21.pptx 课件]
 
*[http://aigraph.cslt.org/courses/21/course-21.pptx 课件]
 
*小清爱提问:机器如何识别车牌[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485046&idx=1&sn=4ca0402b4bc576d140c5d03d79879431&chksm=c3080cb4f47f85a2d5e73c1b4039f44f288a7c66d03d2be203dd1c33516dc7795bf286e2faaa&scene=178#rd]
 
*小清爱提问:机器如何识别车牌[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485046&idx=1&sn=4ca0402b4bc576d140c5d03d79879431&chksm=c3080cb4f47f85a2d5e73c1b4039f44f288a7c66d03d2be203dd1c33516dc7795bf286e2faaa&scene=178#rd]
 +
*小清爱提问:什么是YOLO模型[]
  
  
 
==扩展阅读==
 
==扩展阅读==
  
*  
+
* AI100问:什么是YOLO模型
 +
* AI100问:机器如何识别车牌
  
  
 
==视频展示==
 
==视频展示==
  
*  
+
* YOLO-v3 [http://aigraph.cslt.org/courses/21/YOLOv3-show.mp4]
*  
+
* YOLO-v2 应用于车牌定位 [http://aigraph.cslt.org/courses/21/YOLO2-plate.mp4]
  
 
==演示链接==
 
==演示链接==
第25行: 第27行:
 
==开发者资源==
 
==开发者资源==
  
* Insight Face [https://github.com/deepinsight/insightface]
+
*  
* OpenCV [https://opencv.org/]
+
*  
* Face js: quick demo with JS [https://justadudewhohacks.github.io/face-api.js/docs/index.html]
+
 
  
  
第33行: 第35行:
 
==高级读者==
 
==高级读者==
  
* Brunelli R, Poggio T. Face recognition: Features versus templates[J]. IEEE transactions on pattern analysis and machine intelligence, 1993, 15(10): 1042-1052. [https://www.academia.edu/download/7233387/com-pami1993-10-01.pdf]
+
* Arafat M Y, Khairuddin A S M, Khairuddin U, et al. Systematic review on vehicular licence plate recognition framework in intelligent transport systems[J]. IET Intelligent Transport Systems, 2019, 13(5): 745-755. [https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-its.2018.5151]
* Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1891-1898. [https://openaccess.thecvf.com/content_cvpr_2014/papers/Sun_Deep_Learning_Face_2014_CVPR_paper.pdf]
+
* Srikanth P, Kumar A. Automatic vehicle number plate detection and recognition systems: Survey and implementation[M]//Autonomous and Connected Heavy Vehicle Technology. Academic Press, 2022: 125-139. [https://www.sciencedirect.com/science/article/pii/B9780323905923000070]
* Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level performance in face verification. In Proc. CVPR, 2014.[https://openaccess.thecvf.com/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf]
+
* Zherzdev S, Gruzdev A. Lprnet: License plate recognition via deep neural networks[J]. arXiv preprint arXiv:1806.10447, 2018. [https://arxiv.org/pdf/1806.10447]
* 王东,利节,许莎, 人工智能,第一章,认识你的脸,2019 [http://aibook.cslt.org]
+
* Xie L, Ahmad T, Jin L, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517. [https://trid.trb.org/view/1500448]
 +
* J. Redmon, S. Divvala, R. Girshick, A. Farhadi You only look once: unified, real-time object detection Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016), pp. 779-788 [https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf]

2022年8月10日 (三) 02:11的版本


教学资料

  • 教学参考
  • 课件
  • 小清爱提问:机器如何识别车牌[1]
  • 小清爱提问:什么是YOLO模型[]


扩展阅读

  • AI100问:什么是YOLO模型
  • AI100问:机器如何识别车牌


视频展示

  • YOLO-v3 [2]
  • YOLO-v2 应用于车牌定位 [3]

演示链接

开发者资源



高级读者

  • Arafat M Y, Khairuddin A S M, Khairuddin U, et al. Systematic review on vehicular licence plate recognition framework in intelligent transport systems[J]. IET Intelligent Transport Systems, 2019, 13(5): 745-755. [4]
  • Srikanth P, Kumar A. Automatic vehicle number plate detection and recognition systems: Survey and implementation[M]//Autonomous and Connected Heavy Vehicle Technology. Academic Press, 2022: 125-139. [5]
  • Zherzdev S, Gruzdev A. Lprnet: License plate recognition via deep neural networks[J]. arXiv preprint arXiv:1806.10447, 2018. [6]
  • Xie L, Ahmad T, Jin L, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517. [7]
  • J. Redmon, S. Divvala, R. Girshick, A. Farhadi You only look once: unified, real-time object detection Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016), pp. 779-788 [8]