“第十九章 深度学习的问题”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第21行: 第21行:
  
 
==高级读者==
 
==高级读者==
* What is adversarial learning [https://bdtechtalks.com/2020/07/15/machine-learning-adversarial-examples/]
+
* What is adversarial machine learning [https://bdtechtalks.com/2020/07/15/machine-learning-adversarial-examples/]
*
+
* Fong R C, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation[C]//Proceedings of the IEEE international conference on computer vision. 2017: 3429-3437. [https://openaccess.thecvf.com/content_ICCV_2017/papers/Fong_Interpretable_Explanations_of_ICCV_2017_paper.pdf]
 +
* Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. arXiv preprint arXiv:1312.6199, 2013. [https://arxiv.org/pdf/1312.6199.pdf]
 +
* Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 427-436. [https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.pdf]
 +
* Eykholt K, Evtimov I, Fernandes E, et al. Robust physical-world attacks on deep learning visual classification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 1625-1634. [http://openaccess.thecvf.com/content_cvpr_2018/papers/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.pdf]

2022年8月8日 (一) 06:29的版本


教学资料


扩展阅读

视频展示

演示链接

开发者资源

高级读者

  • What is adversarial machine learning [1]
  • Fong R C, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation[C]//Proceedings of the IEEE international conference on computer vision. 2017: 3429-3437. [2]
  • Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. arXiv preprint arXiv:1312.6199, 2013. [3]
  • Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 427-436. [4]
  • Eykholt K, Evtimov I, Fernandes E, et al. Robust physical-world attacks on deep learning visual classification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 1625-1634. [5]