“第十七章 深度学习”版本间的差异
来自cslt Wiki
(→视频展示) |
|||
第19行: | 第19行: | ||
*VGG Net visualization [http://aigraph.cslt.org/courses/17/VGG16.mp4] | *VGG Net visualization [http://aigraph.cslt.org/courses/17/VGG16.mp4] | ||
+ | *Disclaimer CNN 展示 [http://aigraph.cslt.org/courses/16/CNN_visulization.mp4] | ||
==演示链接== | ==演示链接== |
2022年8月5日 (五) 11:02的版本
教学资料
扩展阅读
视频展示
演示链接
- ConvNetJS 深度神经网络演示 [14]
- Leiden Demo for image classification [15]
- CNN explainer[16]
- Quick style transfer [17]
- Pix2Pix[18]
- AutoWriter[19]
开发者资源
高级读者
- LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015, 521(7553): 436-444.[23]
- Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25. [24]
- Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507. [25]
- Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554. [26]