“第十七章 深度学习”版本间的差异
来自cslt Wiki
第3行: | 第3行: | ||
*[[教学参考-17|教学参考]] | *[[教学参考-17|教学参考]] | ||
*[http://aigraph.cslt.org/courses/17/course-17.pptx 课件] | *[http://aigraph.cslt.org/courses/17/course-17.pptx 课件] | ||
− | *小清爱提问:什么是深度学习(上)?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247487252&idx=1&sn=b3dac3e2afbe2b7ebff901ba358ee3e0&chksm=c30805d6f47f8cc02d8a284fb416c7767f815861f3656a605378bbf6caf718f11191637b81de&scene=178#rd | + | *小清爱提问:什么是深度学习(上)?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247487252&idx=1&sn=b3dac3e2afbe2b7ebff901ba358ee3e0&chksm=c30805d6f47f8cc02d8a284fb416c7767f815861f3656a605378bbf6caf718f11191637b81de&scene=178#rd] |
− | ] | + | *小清爱提问:什么是深度学习(下)?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247487260&idx=1&sn=c6ee1b8e09fcec9d9dfc96ddd06d874f&chksm=c30805def47f8cc8498b5c77c0ad720b45f02e78126fe9ed06e0a4465d3a970874b229692f29&scene=178#rd] |
− | *小清爱提问:什么是深度学习(下)?[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247487260&idx=1&sn=c6ee1b8e09fcec9d9dfc96ddd06d874f&chksm=c30805def47f8cc8498b5c77c0ad720b45f02e78126fe9ed06e0a4465d3a970874b229692f29&scene=178#rd | + | |
− | ] | + | |
==扩展阅读== | ==扩展阅读== |
2022年8月5日 (五) 10:24的版本
教学资料
扩展阅读
视频展示
演示链接
- ConvNetJS 深度神经网络演示 [3]
- ConvNetJS 代码 [4]
- Leiden Demo for image classification [5]
- CNN explainer[6]
- 可解释机器学习 [7]
开发者资源
- Google developer courses [11]
高级读者
- Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" [12]
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Backpropagation Applied to Handwritten Zip Code Recognition; AT&T Bell Laboratories [13]
- Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities". Proceedings of the National Academy of Sciences. 79 (8): 2554–2558. [14]
- Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211. [15]
- Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". Neural-Network Models of Cognition - Biobehavioral Foundations. Advances in Psychology. Neural-Network Models of Cognition. Vol. 121. pp. 471–495. [16]
- Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In Advances in neural information processing systems 6 (pp. 3-10). [17]
- 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [18]
- Christopher M. Bishop, Neural Networks for Pattern Recognition [19]
- Christopher M. Bishop, Pattern Recognition and Machine Learning [20]