“Schedule”版本间的差异
来自cslt Wiki
(→Work Progress) |
(→Daily Report) |
||
第256行: | 第256行: | ||
* understand the difference between lstm model and gru model | * understand the difference between lstm model and gru model | ||
* read the implement code of seq2seq model | * read the implement code of seq2seq model | ||
+ | |- | ||
+ | | rowspan="2"|2017/05/17 | ||
+ | |Shipan Ren || 9:30 || 19:30 || 10 || | ||
+ | * read neural machine translation paper | ||
+ | * read tf_translate code | ||
|- | |- | ||
2017年5月17日 (三) 10:40的版本
目录
NLP Schedule
Members
Current Members
- Yang Feng (冯洋)
- Jiyuan Zhang (张记袁)
- Aodong Li (李傲冬)
- Andi Zhang (张安迪)
- Shiyue Zhang (张诗悦)
- Li Gu (古丽)
- Peilun Xiao (肖培伦)
- Shipan Ren (任师攀)
Former Members
- Chao Xing (邢超) : FreeNeb
- Rong Liu (刘荣) : 优酷
- Xiaoxi Wang (王晓曦) : 图灵机器人
- Xi Ma (马习) : 清华大学研究生
- Tianyi Luo (骆天一) : phd candidate in University of California Santa Cruz
- Qixin Wang (王琪鑫) : MA candidate in University of California
- DongXu Zhang (张东旭): --
- Yiqiao Pan (潘一桥) : MA candidate in University of Sydney
- Shiyao Li (李诗瑶) : BUPT
- Aiting Liu (刘艾婷) : BUPT
Work Progress
Daily Report
Date | Person | start | leave | hours | status |
---|---|---|---|---|---|
2017/04/02 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/03 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/04 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/05 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/06 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/07 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/08 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/09 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/10 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/11 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/12 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/13 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/14 | Andy Zhang | 9:30 | 18:30 | 8 |
|
Peilun Xiao | |||||
2017/04/15 | Andy Zhang | 9:00 | 15:00 | 6 |
|
Peilun Xiao | |||||
2017/04/18 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/04/19 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/04/20 | Aodong Li | 12:00 | 20:00 | 8 |
|
2017/04/21 | Aodong Li | 12:00 | 20:00 | 8 |
|
2017/04/24 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/04/25 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/04/26 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/04/27 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/04/28 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/04/30 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/05/01 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/05/02 | Aodong Li | 11:00 | 20:00 | 8 |
|
2017/05/06 | Aodong Li | 14:20 | 17:20 | 3 |
|
2017/05/07 | Aodong Li | 13:30 | 22:00 | 8 |
|
2017/05/08 | Aodong Li | 11:30 | 21:00 | 8 |
|
2017/05/09 | Aodong Li | 13:00 | 22:00 | 9 |
small data, 1st and 2nd translator uses the same training data, 2nd translator uses random initialized embedding
BASELINE: 43.87 best result of our model: 42.56 |
2017/05/10 | Shipan Ren | 9:00 | 20:00 | 11 |
|
Aodong Li | 13:30 | 22:00 | 8 |
small data, 1st and 2nd translator uses the different training data, counting 22000 and 22017 seperately 2nd translator uses random initialized embedding
BASELINE: 36.67 (36.67 is the model at 4750 updates, but we use model at 3000 updates to prevent the case of overfitting, to generate the 2nd translator's training data, for which the BLEU is 34.96) best result of our model: 29.81 This may suggest that that using either the same training data with 1st translator or different one won't influence 2nd translator's performance, instead, using the same one may be better, at least from results. But I have to give a consideration of a smaller size of training data compared to yesterday's model.
| |
2017/05/11 | Shipan Ren | 10:00 | 19:30 | 9.5 |
|
Aodong Li | 13:00 | 21:00 | 8 |
small data, 1st and 2nd translator uses the same training data, 2nd translator uses constant untrainable embedding imported from 1st translator's decoder
BASELINE: 43.87 best result of our model: 43.48 Experiments show that this kind of series or cascade model will definitely impair the final perfor- mance due to information loss as the information flows through the network from end to end. Decoder's smaller vocabulary size compared to encoder's demonstrate this (9000+ -> 6000+). The intention of this experiment is looking for a map to solve meaning shift using 2nd translator, but result of whether the map is learned or not is obscured by the smaller vocab size phenomenon.
| |
2017/05/12 | Aodong Li | 13:00 | 21:00 | 8 |
|
2017/05/13 | Shipan Ren | 10:00 | 19:00 | 9 |
|
2017/05/14 | Aodong Li | 10:00 | 20:00 | 9 |
small data, 2nd translator uses as training data the concat(Chinese, machine translated English), 2nd translator uses random initialized embedding
BASELINE: 43.87 best result of our model: 43.53
|
2017/05/15 | Shipan Ren | 9:30 | 19:00 | 9.5 |
|
2017/05/17 | Shipan Ren | 9:30 | 19:30 | 10 |
|
Time Off Table
Date | Yang Feng | Jiyuan Zhang |
---|