“Schedule”版本间的差异
来自cslt Wiki
(→Daily Report) |
(→Daily Report) |
||
第187行: | 第187行: | ||
best result of our model: 42.56 | best result of our model: 42.56 | ||
|- | |- | ||
− | | rowspan=" | + | | rowspan="2"|2017/05/10 |
|Shipan Ren || 9:00 || 20:00 || 11 || | |Shipan Ren || 9:00 || 20:00 || 11 || | ||
*Entry procedures | *Entry procedures | ||
*Machine Translation paper reading | *Machine Translation paper reading | ||
+ | |Aodong Li || 13:30 || 22:00 || 8 || | ||
+ | *experiment setting: | ||
+ | small data, | ||
+ | 1st and 2nd translator uses the different training data, counting 22000 and 22017 seperately | ||
+ | 2nd translator uses '''random initialized embedding''' | ||
+ | *results (BLEU): | ||
+ | BASELINE: 36.67 (36.67 is the model at 4750 updates, but we use model at 3000 updates to prevent the case of overfitting, to generate the 2nd translator's training data, for which the BLEU is 34.96) | ||
+ | best result of our model: 29.81 | ||
+ | *code model with 2nd translator with constant embedding | ||
|} | |} | ||
2017年5月11日 (四) 04:19的版本
目录
NLP Schedule
Members
Current Members
- Yang Feng (冯洋)
- Jiyuan Zhang (张记袁)
- Aodong Li (李傲冬)
- Andi Zhang (张安迪)
- Shiyue Zhang (张诗悦)
- Li Gu (古丽)
- Peilun Xiao (肖培伦)
- Shipan Ren (任师攀)
Former Members
- Chao Xing (邢超) : FreeNeb
- Rong Liu (刘荣) : 优酷
- Xiaoxi Wang (王晓曦) : 图灵机器人
- Xi Ma (马习) : 清华大学研究生
- Tianyi Luo (骆天一) : phd candidate in University of California Santa Cruz
- Qixin Wang (王琪鑫) : MA candidate in University of California
- DongXu Zhang (张东旭): --
- Yiqiao Pan (潘一桥) : MA candidate in University of Sydney
- Shiyao Li (李诗瑶) : BUPT
- Aiting Liu (刘艾婷) : BUPT
Work Progress
Daily Report
Date | Person | start | leave | hours | status | |||||
---|---|---|---|---|---|---|---|---|---|---|
2017/04/02 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/03 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/04 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/05 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/06 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/07 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/08 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/09 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/10 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/11 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/12 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/13 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/14 | Andy Zhang | 9:30 | 18:30 | 8 |
| |||||
Peilun Xiao | ||||||||||
2017/04/15 | Andy Zhang | 9:00 | 15:00 | 6 |
| |||||
Peilun Xiao | ||||||||||
2017/04/18 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/04/19 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/04/20 | Aodong Li | 12:00 | 20:00 | 8 |
| |||||
2017/04/21 | Aodong Li | 12:00 | 20:00 | 8 |
| |||||
2017/04/24 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/04/25 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/04/26 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/04/27 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/04/28 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/04/30 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/05/01 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/05/02 | Aodong Li | 11:00 | 20:00 | 8 |
| |||||
2017/05/06 | Aodong Li | 14:20 | 17:20 | 3 |
| |||||
2017/05/07 | Aodong Li | 13:30 | 22:00 | 8 |
| |||||
2017/05/08 | Aodong Li | 11:30 | 21:00 | 8 |
| |||||
2017/05/09 | Aodong Li | 13:00 | 22:00 | 9 |
small data, 1st and 2nd translator uses the same training data, 2nd translator uses random initialized embedding
BASELINE: 43.87 best result of our model: 42.56 | |||||
2017/05/10 | Shipan Ren | 9:00 | 20:00 | 11 |
|
Aodong Li | 13:30 | 22:00 | 8 |
small data, 1st and 2nd translator uses the different training data, counting 22000 and 22017 seperately 2nd translator uses random initialized embedding
BASELINE: 36.67 (36.67 is the model at 4750 updates, but we use model at 3000 updates to prevent the case of overfitting, to generate the 2nd translator's training data, for which the BLEU is 34.96) best result of our model: 29.81
|
Time Off Table
Date | Yang Feng | Jiyuan Zhang |
---|