“Reading table”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第13行: 第13行:
 
|-
 
|-
 
|2015/07/10 ||-||  
 
|2015/07/10 ||-||  
Context-Dependent Translation Selection Using Convolutional Neural Network [http://arxiv.org/abs/1503.02357]
+
*Context-Dependent Translation Selection Using Convolutional Neural Network [http://arxiv.org/abs/1503.02357]
Syntax-based Deep Matching of Short Texts [http://arxiv.org/abs/1503.02427]
+
*Syntax-based Deep Matching of Short Texts [http://arxiv.org/abs/1503.02427]
Convolutional Neural Network Architectures for Matching Natural Language Sentences[http://www.hangli-hl.com/uploads/3/1/6/8/3168008/hu-etal-nips2014.pdf]
+
*Convolutional Neural Network Architectures for Matching Natural Language Sentences[http://www.hangli-hl.com/uploads/3/1/6/8/3168008/hu-etal-nips2014.pdf]
LSTM: A Search Space Odyssey [http://arxiv.org/pdf/1503.04069.pdf]
+
*LSTM: A Search Space Odyssey [http://arxiv.org/pdf/1503.04069.pdf]
A Deep Embedding Model for Co-occurrence Learning  [http://arxiv.org/abs/1504.02824]
+
*A Deep Embedding Model for Co-occurrence Learning  [http://arxiv.org/abs/1504.02824]
Text segmentation based on semantic word embeddings[http://arxiv.org/abs/1503.05543]
+
*Text segmentation based on semantic word embeddings[http://arxiv.org/abs/1503.05543]
semantic parsing via paraphrashings[http://www.cs.tau.ac.il/research/jonathan.berant/homepage_files/publications/ACL14.pdf]
+
*semantic parsing via paraphrashings[http://www.cs.tau.ac.il/research/jonathan.berant/homepage_files/publications/ACL14.pdf]
 
|-
 
|-
 
|}
 
|}

2015年7月10日 (五) 06:43的版本

Date Speaker Materials
2014/10/22 Zhang Dong Xu Why RNN? PPT paper 1,paper 2
2014/12/8 Liu Rong Yu Zhao, Zhiyuan Liu, Maosong Sun. Phrase Type Sensitive Tensor Indexing Model for Semantic Composition. AAAI'15. pdf
Yang Liu, Zhiyuan Liu, Tat-Seng Chua, Maosong Sun. Topical Word Embeddings. AAAI'15. pdfcode
Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, Xuan Zhu. Learning Entity and Relation Embeddings for Knowledge Graph Completion. AAAI'15. pdfcode
2015/07/10 -
  • Context-Dependent Translation Selection Using Convolutional Neural Network [1]
  • Syntax-based Deep Matching of Short Texts [2]
  • Convolutional Neural Network Architectures for Matching Natural Language Sentences[3]
  • LSTM: A Search Space Odyssey [4]
  • A Deep Embedding Model for Co-occurrence Learning [5]
  • Text segmentation based on semantic word embeddings[6]
  • semantic parsing via paraphrashings[7]