“Text-2015-01-14”版本间的差异
(以“==share paper== ==choose paper== ==list paper==”为内容创建页面) |
(→list paper) |
||
| 第2行: | 第2行: | ||
==choose paper== | ==choose paper== | ||
==list paper== | ==list paper== | ||
| + | Deep Learning and Representation Learning Workshop: NIPS 2014 | ||
| + | Accepted papers | ||
| + | Oral presentations: | ||
| + | |||
| + | cuDNN: Efficient Primitives for Deep Learning (#49) | ||
| + | Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer | ||
| + | |||
| + | Distilling the Knowledge in a Neural Network (#65) | ||
| + | Geoffrey Hinton, Oriol Vinyals, Jeff Dean | ||
| + | |||
| + | Supervised Learning in Dynamic Bayesian Networks (#54) | ||
| + | Shamim Nemati, Ryan Adams | ||
| + | |||
| + | Deeply-Supervised Nets (#2) | ||
| + | Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu | ||
| + | |||
| + | |||
| + | |||
| + | Posters, morning session (11:30-14:45): | ||
| + | |||
| + | Unsupervised Feature Learning from Temporal Data (#3) | ||
| + | Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun | ||
| + | |||
| + | Autoencoder Trees (#5) | ||
| + | Ozan Irsoy, Ethem Alpaydin | ||
| + | |||
| + | Scheduled denoising autoencoders (#6) | ||
| + | Krzysztof Geras, Charles Sutton | ||
| + | |||
| + | Learning to Deblur (#8) | ||
| + | Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf | ||
| + | |||
| + | A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10) | ||
| + | Alireza Makhzani, Brendan Frey | ||
| + | |||
| + | "Mental Rotation" by Optimizing Transforming Distance (#11) | ||
| + | Weiguang Ding, Graham Taylor | ||
| + | |||
| + | On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12) | ||
| + | Taichi Kiwaki, Kazuyuki Aihara | ||
| + | |||
| + | Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14) | ||
| + | Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng | ||
| + | |||
| + | Understanding Locally Competitive Networks (#15) | ||
| + | Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber | ||
| + | |||
| + | Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18) | ||
| + | Avraham Ruderman | ||
| + | |||
| + | Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19) | ||
| + | Ryo Karakida, Masato Okada, Shun-ichi Amari | ||
| + | |||
| + | Deep Tempering (#20) | ||
| + | Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio | ||
| + | |||
| + | Learning Word Representations with Hierarchical Sparse Coding (#21) | ||
| + | Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith | ||
| + | |||
| + | Deep Learning as an Opportunity in Virtual Screening (#23) | ||
| + | Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter | ||
| + | |||
| + | Revisit Long Short-Term Memory: An Optimization Perspective (#24) | ||
| + | Qi Lyu, J Zhu | ||
| + | |||
| + | Locally Scale-Invariant Convolutional Neural Networks (#26) | ||
| + | Angjoo Kanazawa, David Jacobs, Abhishek Sharma | ||
| + | |||
| + | Deep Exponential Families (#28) | ||
| + | Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei | ||
| + | |||
| + | Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29) | ||
| + | Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh | ||
| + | |||
| + | Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30) | ||
| + | Phong Le, Willem Zuidema | ||
| + | |||
| + | Deep Multi-Instance Transfer Learning (#32) | ||
| + | Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas | ||
| + | |||
| + | Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33) | ||
| + | Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel | ||
| + | |||
| + | Retrofitting Word Vectors to Semantic Lexicons (#34) | ||
| + | Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith | ||
| + | |||
| + | Deep Sequential Neural Network (#35) | ||
| + | Ludovic Denoyer, Patrick Gallinari | ||
| + | |||
| + | Efficient Training Strategies for Deep Neural Network Language Models (#71) | ||
| + | Holger Schwenk | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | Posters, afternoon session (17:00-18:30): | ||
| + | |||
| + | Deep Learning for Answer Sentence Selection (#36) | ||
| + | Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman | ||
| + | |||
| + | Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37) | ||
| + | Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman | ||
| + | |||
| + | Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39) | ||
| + | Sergey Levine, Pieter Abbeel | ||
| + | |||
| + | SimNets: A Generalization of Convolutional Networks (#41) | ||
| + | Nadav Cohen, Amnon Shashua | ||
| + | |||
| + | Phonetics embedding learning with side information (#44) | ||
| + | Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux | ||
| + | |||
| + | End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45) | ||
| + | Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio | ||
| + | |||
| + | BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46) | ||
| + | Stephan Gouws, Yoshua Bengio, Greg Corrado | ||
| + | |||
| + | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47) | ||
| + | Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio | ||
| + | |||
| + | Reweighted Wake-Sleep (#48) | ||
| + | Jorg Bornschein, Yoshua Bengio | ||
| + | |||
| + | Explain Images with Multimodal Recurrent Neural Networks (#51) | ||
| + | Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille | ||
| + | |||
| + | Rectified Factor Networks and Dropout (#53) | ||
| + | Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter | ||
| + | |||
| + | Towards Deep Neural Network Architectures Robust to Adversarials (#55) | ||
| + | Shixiang Gu, Luca Rigazio | ||
| + | |||
| + | Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56) | ||
| + | Jimmy Ba, Hui Yuan Xiong, Brendan Frey | ||
| + | |||
| + | Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58) | ||
| + | Himabindu Lakkaraju, Richard Socher, Chris Manning | ||
| + | |||
| + | Deep Directed Generative Autoencoders (#59) | ||
| + | Sherjil Ozair, Yoshua Bengio | ||
| + | |||
| + | Conditional Generative Adversarial Nets (#60) | ||
| + | Mehdi Mirza, Simon Osindero | ||
| + | |||
| + | Analyzing the Dynamics of Gated Auto-encoders (#61) | ||
| + | Daniel Im, Graham Taylor | ||
| + | |||
| + | Representation as a Service (#63) | ||
| + | Ouais Alsharif, Joelle Pineau, philip bachman | ||
| + | |||
| + | Provable Methods for Training Neural Networks with Sparse Connectivity (#66) | ||
| + | Hanie Sedghi, Anima Anandkumar | ||
| + | |||
| + | Trust Region Policy Optimization (#67) | ||
| + | John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel | ||
| + | |||
| + | Document Embedding with Paragraph Vectors (#68) | ||
| + | Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado | ||
| + | |||
| + | Backprop-Free Auto-Encoders (#69) | ||
| + | Dong-Hyun Lee, Yoshua Bengio | ||
| + | |||
| + | Rate-Distortion Auto-Encoders (#73) | ||
| + | Luis Sanchez Giraldo, Jose Principe | ||
| + | 评论 | ||
| + | Commenting disabled due to a network error. Please reload the page. | ||
| + | You do not have permission to add comments. | ||
| + | 登录|最近的网站活动|举报滥用行为|打印页面|由 Google 协作平台强力驱动 | ||
2015年1月12日 (一) 06:27的版本
choose paper
list paper
Deep Learning and Representation Learning Workshop: NIPS 2014 Accepted papers Oral presentations:
cuDNN: Efficient Primitives for Deep Learning (#49) Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer
Distilling the Knowledge in a Neural Network (#65) Geoffrey Hinton, Oriol Vinyals, Jeff Dean
Supervised Learning in Dynamic Bayesian Networks (#54) Shamim Nemati, Ryan Adams
Deeply-Supervised Nets (#2) Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
Posters, morning session (11:30-14:45):
Unsupervised Feature Learning from Temporal Data (#3) Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun
Autoencoder Trees (#5) Ozan Irsoy, Ethem Alpaydin
Scheduled denoising autoencoders (#6) Krzysztof Geras, Charles Sutton
Learning to Deblur (#8) Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf
A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10) Alireza Makhzani, Brendan Frey
"Mental Rotation" by Optimizing Transforming Distance (#11) Weiguang Ding, Graham Taylor
On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12) Taichi Kiwaki, Kazuyuki Aihara
Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14) Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng
Understanding Locally Competitive Networks (#15) Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber
Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18) Avraham Ruderman
Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19) Ryo Karakida, Masato Okada, Shun-ichi Amari
Deep Tempering (#20) Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio
Learning Word Representations with Hierarchical Sparse Coding (#21) Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith
Deep Learning as an Opportunity in Virtual Screening (#23) Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter
Revisit Long Short-Term Memory: An Optimization Perspective (#24) Qi Lyu, J Zhu
Locally Scale-Invariant Convolutional Neural Networks (#26) Angjoo Kanazawa, David Jacobs, Abhishek Sharma
Deep Exponential Families (#28) Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei
Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29) Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh
Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30) Phong Le, Willem Zuidema
Deep Multi-Instance Transfer Learning (#32) Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33) Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel
Retrofitting Word Vectors to Semantic Lexicons (#34) Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith
Deep Sequential Neural Network (#35) Ludovic Denoyer, Patrick Gallinari
Efficient Training Strategies for Deep Neural Network Language Models (#71) Holger Schwenk
Posters, afternoon session (17:00-18:30):
Deep Learning for Answer Sentence Selection (#36) Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37) Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39) Sergey Levine, Pieter Abbeel
SimNets: A Generalization of Convolutional Networks (#41) Nadav Cohen, Amnon Shashua
Phonetics embedding learning with side information (#44) Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45) Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio
BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46) Stephan Gouws, Yoshua Bengio, Greg Corrado
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47) Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
Reweighted Wake-Sleep (#48) Jorg Bornschein, Yoshua Bengio
Explain Images with Multimodal Recurrent Neural Networks (#51) Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille
Rectified Factor Networks and Dropout (#53) Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
Towards Deep Neural Network Architectures Robust to Adversarials (#55) Shixiang Gu, Luca Rigazio
Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56) Jimmy Ba, Hui Yuan Xiong, Brendan Frey
Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58) Himabindu Lakkaraju, Richard Socher, Chris Manning
Deep Directed Generative Autoencoders (#59) Sherjil Ozair, Yoshua Bengio
Conditional Generative Adversarial Nets (#60) Mehdi Mirza, Simon Osindero
Analyzing the Dynamics of Gated Auto-encoders (#61) Daniel Im, Graham Taylor
Representation as a Service (#63) Ouais Alsharif, Joelle Pineau, philip bachman
Provable Methods for Training Neural Networks with Sparse Connectivity (#66) Hanie Sedghi, Anima Anandkumar
Trust Region Policy Optimization (#67) John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel
Document Embedding with Paragraph Vectors (#68) Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado
Backprop-Free Auto-Encoders (#69) Dong-Hyun Lee, Yoshua Bengio
Rate-Distortion Auto-Encoders (#73) Luis Sanchez Giraldo, Jose Principe 评论 Commenting disabled due to a network error. Please reload the page. You do not have permission to add comments. 登录|最近的网站活动|举报滥用行为|打印页面|由 Google 协作平台强力驱动