“ASR:2014-12-22”版本间的差异
来自cslt Wiki
(以“==Speech Processing == === AM development === ==== Environment ==== * Already buy 3 760GPU * grid-9/12 760GPU crashed again; grid-11 shutdown automatically. * Chang...”为内容创建页面) |
|||
第4行: | 第4行: | ||
==== Environment ==== | ==== Environment ==== | ||
* Already buy 3 760GPU | * Already buy 3 760GPU | ||
− | |||
− | |||
* First down-frequency of gpu760. | * First down-frequency of gpu760. | ||
+ | * grid-11/12 shut-down automatically | ||
+ | * Re-exchange GPU760 of grid-12 and grid-14 | ||
==== Sparse DNN ==== | ==== Sparse DNN ==== | ||
− | |||
− | |||
* details at http://liuc.cslt.org/pages/sparse.html | * details at http://liuc.cslt.org/pages/sparse.html | ||
+ | * To conduct MPE-training | ||
==== RNN AM==== | ==== RNN AM==== | ||
− | |||
− | |||
− | |||
* Adjusting the learning rate.(+) | * Adjusting the learning rate.(+) | ||
* Trying toolkit of Microsoft.(+) | * Trying toolkit of Microsoft.(+) | ||
* details at http://liuc.cslt.org/pages/rnnam.html | * details at http://liuc.cslt.org/pages/rnnam.html | ||
− | |||
==== A new nnet training scheduler ==== | ==== A new nnet training scheduler ==== | ||
− | |||
* details at http://liuc.cslt.org/pages/nnet-sched.html | * details at http://liuc.cslt.org/pages/nnet-sched.html | ||
+ | * Test 500h dataset, 36-epchs/8-batches --Similar performance observed compared with std recipe | ||
* Test on 4000h dataset. | * Test on 4000h dataset. | ||
第30行: | 第25行: | ||
* Drop out(+) | * Drop out(+) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
:**http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?step=view_request&cvssid=261 | :**http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?step=view_request&cvssid=261 | ||
:* Conclusion | :* Conclusion | ||
第42行: | 第31行: | ||
:** Find and test unknown noise test-data.(++) | :** Find and test unknown noise test-data.(++) | ||
− | * MaxOut | + | * MaxOut && P-norm |
− | + | ||
− | + | ||
− | + | ||
:* Need to solve the too small learning-rate problem | :* Need to solve the too small learning-rate problem | ||
:** Add one normalization layer after the pnorm-layer | :** Add one normalization layer after the pnorm-layer | ||
:** Add L2-norm upper bound | :** Add L2-norm upper bound | ||
− | * Convolutive network | + | * Convolutive network |
− | :* | + | :* DAE test: to test various noises(car/echo/airport....) |
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | | group-size | cnn-output| test_clean_wv1 | test_car_wv1 |test_babble_wv1 | test_airport_wv1 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | max_out_32 | 64 | 32 | 6.82 | 17.75 |36.77 | 35.61 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | max_out_128 | 16 | 128 | 6.09 | 15.92 |31.74 | 30.85 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | max_out_256 | 8 | 256 | 6.38 | 16.47 |31.32 | 31.93 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | max_out_32_MPE | 64 | 32 | 6.25 | 18.62 |49.07 | 46.25 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | cnn_layer_3_3 | 5.73 | 18.09 |30.92 | 30.81 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std | 5.73 | 17.25 |27.59 | 29.07 | ||
+ | ------------------------------------------------------------------------------------------------------- | ||
+ | dnn_std | 6.04 | 16.37 |27.76 | 29.91 | ||
+ | ------------------------------------------------------------------------------------------------------- | ||
+ | |||
====DAE(Deep Atuo-Encode)==== | ====DAE(Deep Atuo-Encode)==== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
:* test on XinWenLianBo music. results on | :* test on XinWenLianBo music. results on | ||
:** http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhaomy&step=view_request&cvssid=318 | :** http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhaomy&step=view_request&cvssid=318 | ||
第75行: | 第69行: | ||
====Speech rate training==== | ====Speech rate training==== | ||
− | * | + | * 64.41->34.4 |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
====Confidence==== | ====Confidence==== | ||
第91行: | 第78行: | ||
===Speaker ID=== | ===Speaker ID=== | ||
− | * | + | :* Non-stream GMM:wer-2.28% |
− | + | seperate3-ivector:wer-3.54 single-ivector:wer-1.57 | |
− | + | seperate-PLDA:wer-0.87 single-PLDA:wer-1.04 | |
− | + | :* Code ready | |
− | : | + | |
− | : | + | |
− | :* | + | |
===Language ID=== | ===Language ID=== |
2014年12月22日 (一) 08:05的版本
目录
Speech Processing
AM development
Environment
- Already buy 3 760GPU
- First down-frequency of gpu760.
- grid-11/12 shut-down automatically
- Re-exchange GPU760 of grid-12 and grid-14
Sparse DNN
- details at http://liuc.cslt.org/pages/sparse.html
- To conduct MPE-training
RNN AM
- Adjusting the learning rate.(+)
- Trying toolkit of Microsoft.(+)
- details at http://liuc.cslt.org/pages/rnnam.html
A new nnet training scheduler
- details at http://liuc.cslt.org/pages/nnet-sched.html
- Test 500h dataset, 36-epchs/8-batches --Similar performance observed compared with std recipe
- Test on 4000h dataset.
Dropout & Maxout & Convolutive network
- Drop out(+)
Dropout is effective for minority.
- Find and test unknown noise test-data.(++)
- MaxOut && P-norm
- Need to solve the too small learning-rate problem
- Add one normalization layer after the pnorm-layer
- Add L2-norm upper bound
- Need to solve the too small learning-rate problem
- Convolutive network
- DAE test: to test various noises(car/echo/airport....)
| group-size | cnn-output| test_clean_wv1 | test_car_wv1 |test_babble_wv1 | test_airport_wv1
max_out_32 | 64 | 32 | 6.82 | 17.75 |36.77 | 35.61
max_out_128 | 16 | 128 | 6.09 | 15.92 |31.74 | 30.85
max_out_256 | 8 | 256 | 6.38 | 16.47 |31.32 | 31.93
max_out_32_MPE | 64 | 32 | 6.25 | 18.62 |49.07 | 46.25
cnn_layer_3_3 | 5.73 | 18.09 |30.92 | 30.81
cnn_std | 5.73 | 17.25 |27.59 | 29.07
dnn_std | 6.04 | 16.37 |27.76 | 29.91
DAE(Deep Atuo-Encode)
- test on XinWenLianBo music. results on
Denoising & Farfield ASR
- ICASSP paper submitted.
- HOLD
VAD
- Harmonics and Teager energy features being investigation (++)
Speech rate training
- 64.41->34.4
Confidence
- Reproduce the experiments on fisher dataset.
- Use the fisher DNN model to decode all-wsj dataset
- preparing scoring for puqiang data
- HOLD
Speaker ID
- Non-stream GMM:wer-2.28%
seperate3-ivector:wer-3.54 single-ivector:wer-1.57 seperate-PLDA:wer-0.87 single-PLDA:wer-1.04
- Code ready
Language ID
- GMM-based language is ready.
- Delivered to Jietong
- Prepare the test-case
Voice Conversion
- Yiye is reading materials(+)
Text Processing
LM development
Domain specific LM
- domain lm
- Sougou2T : kn-count continue .
- lm v2.0 done,just to test the wer.
- new dict.
tag LM
- summary done
- need to do
- tag Probability should test add the weight(hanzhenglong) and handover to hanzhenglong (hold)
- paper done,begin to modify .
RNN LM
- rnn
- test wer RNNLM on Chinese data from jietong-data(this week)
- generate the ngram model from rnnlm and test the ppl with different size txt.[1]
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
Word2Vector
W2V based doc classification
- Initial results variable Bayesian GMM obtained. Performance is not as good as the conventional GMM.(hold)
- Non-linear inter-language transform: English-Spanish-Czch: wv model training done, transform model on investigation
Knowledge vector
- Knowledge vector started
- code done,to test the baseline with a task.
- problem with weight.
relation
- Accomplish transE with almost the same performance as the paper did(even better)[2]
Character to word
- Character to word conversion(hold)
- prepare the task: word similarity
- prepare the dict.
Translation
- v5.0 demo released
- cut the dict and use new segment-tool
QA
improve fuzzy match
- add Synonyms similarity using MERT-4 method(hold)
improve lucene search
- mutli query's performance improve from 66.228 to 68.672. detail:[3]
- check the MERT problem that doesn't mach the qa
XiaoI framework
- ner from xiaoI done
query normalization
- using NER to normalize the word
- new inter will install SEMPRE