“2024-10-21”版本间的差异
来自cslt Wiki
Luoxiaoxue(讨论 | 贡献) |
|||
| (9位用户的11个中间修订版本未显示) | |||
| 第66行: | 第66行: | ||
|Xiaolou Li | |Xiaolou Li | ||
|| | || | ||
| − | * | + | * AVHuBERT unit exp |
| + | ** dc connector (↑0.8% than discrete unit) | ||
| + | ** concat feature and embedding (↑2% than discrete unit, ↓0.3% than baseline) | ||
| + | * CVS3 quality check (30h totally) [https://z1et6d3xtb.feishu.cn/drive/folder/HGHbfyCJRlLYzUdSlEicOEztnYc] | ||
| + | * This work is help by Zehua, Linwan, Tianhao | ||
| + | * MLLM system with audio output design | ||
|| | || | ||
* | * | ||
| 第77行: | 第82行: | ||
|Zehua Liu | |Zehua Liu | ||
|| | || | ||
| − | * | + | *Verify VSR data |
| + | *Finish Data Verification Report | ||
| + | *ICL work(CER: 47.87% < CER: 51.08%) | ||
| + | *Time Mask matters[https://z1et6d3xtb.feishu.cn/docx/JBsidACDVojhCaxFQLbcCVbsnAc?from=from_copylink] | ||
|| | || | ||
* | * | ||
| 第101行: | 第109行: | ||
|Wan Lin | |Wan Lin | ||
|| | || | ||
| − | * | + | * help VSR data verification |
| + | * experiment in voxblink2 [https://z1et6d3xtb.feishu.cn/docx/MxBNdPbLao0tsoxkBVCcUgUoneh?from=from_copylink] | ||
|| | || | ||
* | * | ||
| 第112行: | 第121行: | ||
|Tianhao Wang | |Tianhao Wang | ||
|| | || | ||
| − | * | + | * adjust the code of AudioSep (CLAP) to support multi-mix and audio-query (in training) |
| + | * some project testing | ||
|| | || | ||
* | * | ||
| 第137行: | 第147行: | ||
|Zhenyu Zhou | |Zhenyu Zhou | ||
|| | || | ||
| − | * | + | *conditional chain 2-mix results reproduction(sisidr: 10.714 -> 15.6) |
| + | *model quantization finial version submission | ||
|| | || | ||
* | * | ||
| 第148行: | 第159行: | ||
|Junhui Chen | |Junhui Chen | ||
|| | || | ||
| − | * | + | * Experiments for NS |
| + | * Look for speaker detection model with Resnet34 for frame label | ||
|| | || | ||
* | * | ||
| 第170行: | 第182行: | ||
|Yu Zhang | |Yu Zhang | ||
|| | || | ||
| − | * | + | * SocioDojo Llama 3.1 8B investment task |
| + | ** acc return is about 10% below nasdaq 100 index | ||
|| | || | ||
| − | * | + | * add more professional information source, such as WSJ (current is Tweets Trending, which is too entertainment-oriented) |
| + | * control the BUY/SELL amount of Actuator (current investments ratio is too high) | ||
| + | * reproduce other Multi Agent investment pipeline such as FinAgent or FinRobot | ||
|| | || | ||
* | * | ||
| 第192行: | 第207行: | ||
|Yang Wei | |Yang Wei | ||
|| | || | ||
| − | * | + | * Train text enroll KWS model and test with Aibabel dialect data. |
|| | || | ||
* | * | ||
| 第215行: | 第230行: | ||
** with encoder frozen, whisper-large-v3 (20.5 WER) | ** with encoder frozen, whisper-large-v3 (20.5 WER) | ||
* Finetuning LLM | * Finetuning LLM | ||
| − | ** Finetuned Qwen2.5-0.5B | + | ** Finetuned Qwen2.5-0.5B on conversation dataset translated from English to Oromo |
| − | + | ||
* | * | ||
|| | || | ||
| 第223行: | 第237行: | ||
|Yue Gu | |Yue Gu | ||
|| | || | ||
| − | * | + | * write the cover letter |
| + | * design a new speaker adaptation framework | ||
|| | || | ||
* | * | ||
| 第232行: | 第247行: | ||
|Qi Qu | |Qi Qu | ||
|| | || | ||
| − | * | + | * AED: |
| + | ** New CED-based classifiers deployed onto devices, yielding acceptable performance. | ||
| + | * KWS: | ||
| + | ** Quantization and format conversion of production models for deployment on embedded device w/ NPU. Default quantization mode leads to unacceptable loss of precision. Will try hybrid quantization. | ||
| + | ** Text-enrollment KWS: some dynamic dimensions misinterpreted as constant duration exportation to ONNX. | ||
|| | || | ||
* | * | ||
2024年10月21日 (一) 11:01的最后版本
| People | This Week | Next Week | Task Tracking (DeadLine) |
|---|---|---|---|
| Dong Wang |
|
|
|
| Lantian Li |
|
|
|
| Ying Shi |
|
|
|
| Zhenghai You |
|
|
|
| Junming Yuan |
|
|
|
| Xiaolou Li |
|
|
|
| Zehua Liu |
|
|
|
| Pengqi Li |
|
|
|
| Wan Lin |
|
|
|
| Tianhao Wang |
|
|
|
| Xiaoxue Luo |
|
|
|
| Zhenyu Zhou |
|
|
|
| Junhui Chen |
|
|
|
| Jiaying Wang |
|
|
|
| Yu Zhang |
|
|
|
| Wenqiang Du |
|
|
|
| Yang Wei |
|
|
|
| Lily |
|
|
|
| Turi |
|
| |
| Yue Gu |
|
|
|
| Qi Qu |
|
|
|