“第八章 让人惊讶的智能”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
演示链接
 
(相同用户的3个中间修订版本未显示)
第19行: 第19行:
 
*计算机系孙茂松团队在自然·通讯杂志发表生物医学知识计算研究成果[https://www.cs.tsinghua.edu.cn/info/1088/4797.htm]
 
*计算机系孙茂松团队在自然·通讯杂志发表生物医学知识计算研究成果[https://www.cs.tsinghua.edu.cn/info/1088/4797.htm]
 
*越来越像人:波士顿动力机器人进化史 [https://www.sohu.com/a/647095398_100051959]
 
*越来越像人:波士顿动力机器人进化史 [https://www.sohu.com/a/647095398_100051959]
 +
*60年过去了,五指灵巧手还能走出实验室吗?[https://blog.csdn.net/zhixingjueqi/article/details/127447359]
 
*无人机群体智能[https://www.toutiao.com/article/7119651267353412099/?wid=1658648374599][http://www.81.cn/jfjbmap/content/2021-09/03/content_298211.htm]
 
*无人机群体智能[https://www.toutiao.com/article/7119651267353412099/?wid=1658648374599][http://www.81.cn/jfjbmap/content/2021-09/03/content_298211.htm]
 
*中国天眼[http://www.xinhuanet.com/politics/2021-04/26/c_1127375113.htm]
 
*中国天眼[http://www.xinhuanet.com/politics/2021-04/26/c_1127375113.htm]
第40行: 第41行:
 
*Picsart[*] [https://picsart.com/ai-image-generator]
 
*Picsart[*] [https://picsart.com/ai-image-generator]
 
*ChatGPT[*][https://chat.chatgptdemo.net/]
 
*ChatGPT[*][https://chat.chatgptdemo.net/]
 +
*豆包(字节版ChatGPT) [http://doubao.com]
 +
*天工(昆仑万维版ChatGPT)[http://tiangong.cn]
 +
*OpenAI Blog, DALL·E: Creating Images from Text, 2021.1 [*](https://openai.com/blog/dall-e/)
  
 
==开发者资源==
 
==开发者资源==
第54行: 第58行:
 
*Collaborative robots from Google [https://journals.sagepub.com/doi/pdf/10.1177/0278364917710318]
 
*Collaborative robots from Google [https://journals.sagepub.com/doi/pdf/10.1177/0278364917710318]
 
*Deep learning for Muller mimickery [https://www.science.org/doi/pdf/10.1126/sciadv.aaw4967]
 
*Deep learning for Muller mimickery [https://www.science.org/doi/pdf/10.1126/sciadv.aaw4967]
*GENERATING 3D STRUCTURES FROM A 2D SLICE WITH GAN-BASED DIMENSIONALITY EXPANSION [https://spiral.imperial.ac.uk/bitstream/10044/1/87955/2/Kench%2C%20Cooper%20-%202021%20-%20Generating%203D%20structures%20from%20a%202D%20slice%20with%20GAN-based%20dimensionality%20expansion.pdf]
 
 
*AlphaFold [https://www.nature.com/articles/s41586-021-03819-2]
 
*AlphaFold [https://www.nature.com/articles/s41586-021-03819-2]
 
*Robot make experiment[https://www.nature.com/articles/s41586-020-2442-2]
 
*Robot make experiment[https://www.nature.com/articles/s41586-020-2442-2]
 +
*Zeng Z, Yao Y, Liu Z, et al. A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals. Nature communications, 2022, 13(1): 1-11.[https://www.nature.com/articles/s41467-022-28494-3]
 +
*Levine S, Pastor P, Krizhevsky A, et al. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International journal of robotics research, 2018, 37(4-5): 421-436.[https://journals.sagepub.com/doi/full/10.1177/0278364917710318]
 +
*Qiao C, Li D, Liu Y, et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nature biotechnology, 2022: 1-11.[https://www.nature.com/articles/s41587-022-01471-3]

2023年8月25日 (五) 06:40的最后版本

教学资料

扩展阅读

  • DeepMind AlphaGo博客[1]
  • 百度百科:AlphaGo [2]
  • AI100问:AI美颜[3]
  • AI100问:绘画大师[4]
  • AI100问:甜美的导航声音是如何产生的?[5]
  • 老人声音报警器[6]
  • DAll-E:文字生成图片[7][8]
  • ChatGPT介绍[9][10]
  • 计算机系孙茂松团队在自然·通讯杂志发表生物医学知识计算研究成果[11]
  • 越来越像人:波士顿动力机器人进化史 [12]
  • 60年过去了,五指灵巧手还能走出实验室吗?[13]
  • 无人机群体智能[14][15]
  • 中国天眼[16]
  • AI超分辨率显微镜[17]
  • AI100问:人工智能破解蛋白质结构之迷[18]

视频展示

  • AI机器人做实验[19][20]
  • 波士顿动力机器人[21][22]
  • UC Berkley的科学家用一小时教会机器人站立、抓取等动作[23][24][25]
  • CCTV-2 生活早间秀 除了下围棋 机器人还会作诗?[26]
  • DALL-E2: [27]

演示链接

  • Cogview 文本生成图片 [28]
  • DALL-E 文本生成图片[29]
  • Stable-difussion 文本图片生成 [30]
  • ProsPainter:文本加绘图生成图片 [31]
  • Artbreeder: 文本绘图 [32]
  • TextToImage[*] [33]
  • Picsart[*] [34]
  • ChatGPT[*][35]
  • 豆包(字节版ChatGPT) [36]
  • 天工(昆仑万维版ChatGPT)[37]
  • OpenAI Blog, DALL·E: Creating Images from Text, 2021.1 [*](https://openai.com/blog/dall-e/)

开发者资源

高级读者

  • AlphaGo[38]
  • AlhpaZero[39]
  • FaceBeaty[40]
  • Style transfer [41]
  • A reivew of speech synthesis [42]
  • Cogview [43]
  • DALL-E [44][45]
  • Collaborative robots from Google [46]
  • Deep learning for Muller mimickery [47]
  • AlphaFold [48]
  • Robot make experiment[49]
  • Zeng Z, Yao Y, Liu Z, et al. A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals. Nature communications, 2022, 13(1): 1-11.[50]
  • Levine S, Pastor P, Krizhevsky A, et al. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International journal of robotics research, 2018, 37(4-5): 421-436.[51]
  • Qiao C, Li D, Liu Y, et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nature biotechnology, 2022: 1-11.[52]