“第三十二章 AI游戏”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“==教学资料== * 教学参考 * [http://aigraph.cslt.org/courses/32/course-32.pptx 课件] * 小清爱提问:阿尔法狗和深蓝算法有...”为内容创建页面)
 
 
(相同用户的5个中间修订版本未显示)
第3行: 第3行:
 
* [[教学参考-32|教学参考]]
 
* [[教学参考-32|教学参考]]
 
* [http://aigraph.cslt.org/courses/32/course-32.pptx 课件]
 
* [http://aigraph.cslt.org/courses/32/course-32.pptx 课件]
* 小清爱提问:阿尔法狗和深蓝算法有什么不同? [https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485815&idx=1&sn=e7f80182a71b1820fd52266faef4f45e&chksm=c30803b5f47f8aa3ae32e138b67447318fd64c1b42837447073e58de7241cd348da5aa136a17&scene=178#rd]
+
* 小清爱提问:机器如何学会打游戏? [https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247485815&idx=1&sn=e7f80182a71b1820fd52266faef4f45e&chksm=c30803b5f47f8aa3ae32e138b67447318fd64c1b42837447073e58de7241cd348da5aa136a17&scene=178#rd]
  
 
==扩展阅读==
 
==扩展阅读==
 +
 +
 +
* AI 100问:机器如何学会打游戏? [[http://aigraph.cslt.org/ai100/AI-100-82-机器如何学会打游戏.pdf]
 +
* OpenAI 捉迷藏游戏[https://openai.com/blog/emergent-tool-use/]
 +
* DeepMind AlphaStar 博客  [https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii]
 +
* AlphaStar真的智能了吗? [https://www.sohu.com/a/294455221_610473]
 +
* DeepMind最强星际争霸AI—— AlphaStar的复现 [https://zhuanlan.zhihu.com/p/56539931]
  
  
  
 
==视频展示==
 
==视频展示==
 +
* Deep Mind Atari game playing [http://aigraph.cslt.org/courses/32/Atari.mp4]
 +
* OpenAI Hide and Seek [http://aigraph.cslt.org/courses/32/Multi-Agent.mp4]
 +
* AlphaStar [http://aigraph.cslt.org/courses/32/AlphaStar.mp4]
 +
* Bilibili: AlphaStar 开发纪录片 [https://www.bilibili.com/video/BV1Gb411y7BN?spm_id_from=333.337.search-card.all.click]
 +
* Bilibili: AlphaStar的对战场面 [https://www.bilibili.com/video/BV1Ft411t7Ex?spm_id_from=333.337.search-card.all.click]
  
  
 
==演示链接==
 
==演示链接==
  
 
+
* 斗地主在线演示  [https://www.douzero.org/]
 
+
 
+
  
 
==开发者资源==
 
==开发者资源==
  
 
+
* 斗地主 [*][https://github.com/kwai/DouZero/blob/main/README.zh-CN.md]
  
 
==高级读者==
 
==高级读者==
  
 
* Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533. [https://daiwk.github.io/assets/dqn.pdf]
 
* Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533. [https://daiwk.github.io/assets/dqn.pdf]
*
+
* Baker B, Kanitscheider I, Markov T, et al. Emergent tool use from multi-agent autocurricula[J]. arXiv preprint arXiv:1909.07528, 2019. [https://arxiv.org/pdf/1909.07528]
 +
* Arulkumaran K, Cully A, Togelius J. Alphastar: An evolutionary computation perspective[C]//Proceedings of the genetic and evolutionary computation conference companion. 2019: 314-315. [https://arxiv.org/pdf/1902.01724]
 +
* Niels Justesen, Philip Bontrager, Julian Togelius, Sebastian Risi, Deep Learning for Video Game Playing [https://arxiv.org/abs/1708.07902][https://github.com/hijkzzz/deep-reinforcement-learning-notes]

2023年8月13日 (日) 02:22的最后版本

教学资料

扩展阅读

  • AI 100问:机器如何学会打游戏? [[2]
  • OpenAI 捉迷藏游戏[3]
  • DeepMind AlphaStar 博客 [4]
  • AlphaStar真的智能了吗? [5]
  • DeepMind最强星际争霸AI—— AlphaStar的复现 [6]


视频展示

  • Deep Mind Atari game playing [7]
  • OpenAI Hide and Seek [8]
  • AlphaStar [9]
  • Bilibili: AlphaStar 开发纪录片 [10]
  • Bilibili: AlphaStar的对战场面 [11]


演示链接

  • 斗地主在线演示 [12]

开发者资源

高级读者

  • Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533. [14]
  • Baker B, Kanitscheider I, Markov T, et al. Emergent tool use from multi-agent autocurricula[J]. arXiv preprint arXiv:1909.07528, 2019. [15]
  • Arulkumaran K, Cully A, Togelius J. Alphastar: An evolutionary computation perspective[C]//Proceedings of the genetic and evolutionary computation conference companion. 2019: 314-315. [16]
  • Niels Justesen, Philip Bontrager, Julian Togelius, Sebastian Risi, Deep Learning for Video Game Playing [17][18]