“第二十二章 美颜”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
 
(相同用户的7个中间修订版本未显示)
第3行: 第3行:
 
==教学资料==
 
==教学资料==
 
*[[教学参考-22|教学参考]]
 
*[[教学参考-22|教学参考]]
*[http://aigraph.cslt.org/courses/21/course-22.pptx 课件]
+
*[http://aigraph.cslt.org/courses/22/course-22.pptx 课件]
 
*小清爱提问:机器如何美颜[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247484435&idx=1&sn=f2325d1080c036389e2266a219d6bc28&chksm=c3080ed1f47f87c7da475ec854070863ab8d0d38be21b0eaf8822a85bf168aac053004020b5b&scene=178#rd]
 
*小清爱提问:机器如何美颜[https://mp.weixin.qq.com/s?__biz=Mzk0NjIzMzI2MQ==&mid=2247484435&idx=1&sn=f2325d1080c036389e2266a219d6bc28&chksm=c3080ed1f47f87c7da475ec854070863ab8d0d38be21b0eaf8822a85bf168aac053004020b5b&scene=178#rd]
  
第10行: 第10行:
 
==扩展阅读==
 
==扩展阅读==
  
* AI100问:机器如何帮你美颜[]
+
* AI100问:机器如何帮你美颜[http://aigraph.cslt.org/ai100/AI-100-80-AI如何为你美颜.pdf]
  
  
 
==视频展示==
 
==视频展示==
  
*  
+
* 美颜前后[http://aigraph.cslt.org/courses/22/meiyanqianhou.mp4]
  
  
第21行: 第21行:
 
==演示链接==
 
==演示链接==
  
 +
* How normal am I [https://www.hownormalami.eu/]
 +
* 旷世人脸打分 [https://www.faceplusplus.com/beauty/]
  
  
第27行: 第29行:
 
* Code of BeautyGAN [https://github.com/Honlan/BeautyGAN]
 
* Code of BeautyGAN [https://github.com/Honlan/BeautyGAN]
 
* Beautifulness prediction [https://github.com/ustcqidi/BeautyPredict]
 
* Beautifulness prediction [https://github.com/ustcqidi/BeautyPredict]
 +
* Online beatificaiton [https://github.com/Guikunzhi/BeautifyFaceDemo]
 +
* TangineKit: land mark detection [https://github.com/OAID/TengineKit]
 +
* Android make up [https://github.com/jiangzhongbo/TengineKit_Demo_Big_Eyes] [https://github.com/DingProg/Makeup]
 +
  
 
==高级读者==
 
==高级读者==
* [1] Tingting Li, Ruihe Qian, Chao Dong, Si Liu, Qiong Yan,Wenwu Zhu, and Liang Lin. Beautygan: Instance-level fa-cial makeup transfer with deep generative adversarial network. In2018 ACM Multimedia Conference on MultimediaConference, pages 645–653. ACM, 2018. [https://dl.acm.org/doi/abs/10.1145/3240508.3240618]
+
* Tingting Li, Ruihe Qian, Chao Dong, Si Liu, Qiong Yan,Wenwu Zhu, and Liang Lin. Beautygan: Instance-level fa-cial makeup transfer with deep generative adversarial network. In2018 ACM Multimedia Conference on MultimediaConference, pages 645–653. ACM, 2018. [https://dl.acm.org/doi/abs/10.1145/3240508.3240618]
 
* Liu X, Wang R, Chen C F, et al. Face beautification: Beyond makeup transfer[J]. arXiv preprint arXiv:1912.03630, 2019. [https://arxiv.org/pdf/1912.03630.pdf?]
 
* Liu X, Wang R, Chen C F, et al. Face beautification: Beyond makeup transfer[J]. arXiv preprint arXiv:1912.03630, 2019. [https://arxiv.org/pdf/1912.03630.pdf?]

2023年8月13日 (日) 01:55的最后版本


教学资料


扩展阅读

  • AI100问:机器如何帮你美颜[2]


视频展示

  • 美颜前后[3]


演示链接

  • How normal am I [4]
  • 旷世人脸打分 [5]


开发者资源

  • Code of BeautyGAN [6]
  • Beautifulness prediction [7]
  • Online beatificaiton [8]
  • TangineKit: land mark detection [9]
  • Android make up [10] [11]


高级读者

  • Tingting Li, Ruihe Qian, Chao Dong, Si Liu, Qiong Yan,Wenwu Zhu, and Liang Lin. Beautygan: Instance-level fa-cial makeup transfer with deep generative adversarial network. In2018 ACM Multimedia Conference on MultimediaConference, pages 645–653. ACM, 2018. [12]
  • Liu X, Wang R, Chen C F, et al. Face beautification: Beyond makeup transfer[J]. arXiv preprint arXiv:1912.03630, 2019. [13]