“第十七章 深度学习”版本间的差异
来自cslt Wiki
(→演示链接) |
(→高级读者) |
||
(相同用户的11个中间修订版本未显示) | |||
第8行: | 第8行: | ||
==扩展阅读== | ==扩展阅读== | ||
− | + | *AI100问:什么是深度学习?[http://aigraph.cslt.org/ai100/AI-100-48-什么是深度学习.pdf] | |
+ | *维基百科:深度学习 [http://aigraph.cslt.org/courses/17/深度学习.pdf][http://aigraph.cslt.org/courses/17/Deep_learning.pdf] | ||
+ | *维基百科:杰弗里·辛顿 [http://aigraph.cslt.org/courses/17/杰弗里·辛顿.pdf][http://aigraph.cslt.org/courses/17/Geoffrey_Hinton.pdf] | ||
+ | *维基百科:约书亚·本希奥 [http://aigraph.cslt.org/courses/17/约书亚·本希奥.pdf][http://aigraph.cslt.org/courses/17/Yoshua_Bengio.pdf] | ||
+ | *维基百科:杨立昆 [http://aigraph.cslt.org/courses/17/杨立昆.pdf][http://aigraph.cslt.org/courses/17/Yann_LeCun.pdf] | ||
+ | *维基百科:通用近似定理[http://aigraph.cslt.org/courses/17/Universal_approximation_theorem.pdf][http://aigraph.cslt.org/courses/17/通用近似定理.pdf] | ||
==视频展示== | ==视频展示== | ||
+ | |||
+ | *VGG Net visualization [http://aigraph.cslt.org/courses/17/VGG16.mp4] | ||
+ | *Disclaimer CNN 展示 [http://aigraph.cslt.org/courses/16/CNN_visulization.mp4] | ||
==演示链接== | ==演示链接== | ||
第20行: | 第28行: | ||
* Pix2Pix[https://affinelayer.com/pixsrv/] | * Pix2Pix[https://affinelayer.com/pixsrv/] | ||
* AutoWriter[https://cyborg.tenso.rs/] | * AutoWriter[https://cyborg.tenso.rs/] | ||
+ | * HoggingFace 演示[https://www.kdnuggets.com/2022/05/top-10-machine-learning-demos-hugging-face-spaces-edition.html] | ||
+ | * CNN visualization [https://distill.pub/2017/feature-visualization/] | ||
==开发者资源== | ==开发者资源== | ||
*Georgia Tech, Polo Club (可解释机器学习) [https://poloclub.github.io/] | *Georgia Tech, Polo Club (可解释机器学习) [https://poloclub.github.io/] | ||
− | *Google developer courses [https://developers.google.com/machine-learning/crash-course?hl=zh-cn] | + | *Google developer courses [*][https://developers.google.com/machine-learning/crash-course?hl=zh-cn] |
− | * ConvNetJS 代码 [https://github.com/karpathy/convnetjs] | + | *ConvNetJS 代码 [https://github.com/karpathy/convnetjs] |
==高级读者== | ==高级读者== | ||
− | * | + | * LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015, 521(7553): 436-444.[https://s3.us-east-2.amazonaws.com/hkg-website-assets/static/pages/files/DeepLearning.pdf] |
− | * | + | * Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25. [https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf] |
− | * | + | * Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507. [https://asset-pdf.scinapse.io/prod/2100495367/2100495367.pdf] |
− | * | + | * Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554. [https://www.cs.utoronto.ca/~hinton/absps/ncfast.pdf] |
− | + | * Universal approximation theorem [*][https://medium.com/analytics-vidhya/neural-networks-and-the-universal-approximation-theorem-e5c387982eed] | |
− | * | + | |
* 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [http://mlbook.cslt.org] | * 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [http://mlbook.cslt.org] | ||
− | * | + | * Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning [https://www.deeplearningbook.org/] |
− | + |
2023年8月13日 (日) 01:43的最后版本
教学资料
扩展阅读
- AI100问:什么是深度学习?[3]
- 维基百科:深度学习 [4][5]
- 维基百科:杰弗里·辛顿 [6][7]
- 维基百科:约书亚·本希奥 [8][9]
- 维基百科:杨立昆 [10][11]
- 维基百科:通用近似定理[12][13]
视频展示
演示链接
- ConvNetJS 深度神经网络演示 [16]
- Leiden Demo for image classification [17]
- CNN explainer[18]
- Quick style transfer [19]
- Pix2Pix[20]
- AutoWriter[21]
- HoggingFace 演示[22]
- CNN visualization [23]
开发者资源
高级读者
- LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015, 521(7553): 436-444.[27]
- Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25. [28]
- Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507. [29]
- Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554. [30]
- Universal approximation theorem [*][31]
- 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [32]
- Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning [33]