“QSLocal-history”版本间的差异
来自cslt Wiki
Zhangshuai(讨论 | 贡献) |
|||
(3位用户的12个中间修订版本未显示) | |||
第6行: | 第6行: | ||
|- | |- | ||
| || README || 时实更新的README文档,使用前请先认真阅读 || [https://gitlab.com/freeneb/app-vpr-local/blob/master/doc/README] | | || README || 时实更新的README文档,使用前请先认真阅读 || [https://gitlab.com/freeneb/app-vpr-local/blob/master/doc/README] | ||
+ | |- | ||
+ | |12.14||V4.2.1||更新log:在x-vector模型中,加入了nnet-vad,并把nnet模型压缩至int16。引擎更新到2.1.1 模型更新到2.1.4|| [[Image:VPR_V4.2.1.png|100px|VPR_V4.2.1]] | ||
+ | |- | ||
+ | |12.05||V4.2.0||引擎更新到2.0.1 模型更新到2.1.1 支持x-vector || [[Image:VPR_V4.2.0.png|100px|VPR_V4.2.0]] | ||
+ | |- | ||
+ | |11.20||V4.1.2||Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. Add nnet-vad nnet_vad_threshold=-3|| [[Image:VPR_V4.1.2.png|100px|VPR_V4.1.2]] | ||
+ | |- | ||
+ | |10.08||V4.1.1||Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. Add nnet-vad nnet_vad_threshold=-3|| [[Image:VPR_V4.1.1.png|100px|VPR_V4.1.1]] | ||
+ | |- | ||
+ | |9.30||V4.1.0||Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. || [[Image:VPR_V4.1.0.png|100px|VPR_V4.1.0]] | ||
+ | |- | ||
+ | |9.25||V3.11.0||Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. || [[Image:VPR_V3.11.0.png|100px|VPR_V3.11.0]] | ||
+ | |- | ||
+ | |8.5||V3.10.0||QSLocal 3.10 增加阿里训练数据、新vad模型 || [[Image:VPR_V3.10.0.png|100px|VPR_V3.10.0]] | ||
|- | |- | ||
|7.6||V3.8.5||使用VPR0.6版本引擎 || [[Image:VPR_V3.8.5.png|100px|VPR_V3.8.5]] | |7.6||V3.8.5||使用VPR0.6版本引擎 || [[Image:VPR_V3.8.5.png|100px|VPR_V3.8.5]] | ||
|- | |- | ||
− | |6. | + | |6.29||V3.8.4||使用3.8模型+DNN Vad,VPR0.5版本引擎 || [[Image:VPR_V3.8.4.png|100px|VPR_V3.8.4]] |
|- | |- | ||
|6.21||V3.9.3||在3.9版模型基础上,加入了dnn-based vad || [[Image:VPR_V3.9.3.png|100px|VPR_V3.9.3]] | |6.21||V3.9.3||在3.9版模型基础上,加入了dnn-based vad || [[Image:VPR_V3.9.3.png|100px|VPR_V3.9.3]] |
2018年12月14日 (五) 02:00的最后版本
FreeNeb Release List | |||
---|---|---|---|
Date | Version | note | QR Code |
README | 时实更新的README文档,使用前请先认真阅读 | [1] | |
12.14 | V4.2.1 | 更新log:在x-vector模型中,加入了nnet-vad,并把nnet模型压缩至int16。引擎更新到2.1.1 模型更新到2.1.4 | |
12.05 | V4.2.0 | 引擎更新到2.0.1 模型更新到2.1.1 支持x-vector | |
11.20 | V4.1.2 | Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. Add nnet-vad nnet_vad_threshold=-3 | |
10.08 | V4.1.1 | Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. Add nnet-vad nnet_vad_threshold=-3 | |
9.30 | V4.1.0 | Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. | |
9.25 | V3.11.0 | Network: ReLU tdnn, splice (-2,-1,0,1,2 -2,2 0 -1,1 0 -2,2 0 -4,4 0 0) * 1000. Training: trained on VoxCeleb (1+2) for 3 epoches, then full-info adaptation with the same training set for 100 iters. Config: full-info_fix_inter100_time1_momen0.9 num-gpu-initial=2 num-gpu-final=4 initial_effective_lrate=0.00015, final_effective_lrate=0.00015 LDA: the same training set. | |
8.5 | V3.10.0 | QSLocal 3.10 增加阿里训练数据、新vad模型 | |
7.6 | V3.8.5 | 使用VPR0.6版本引擎 | |
6.29 | V3.8.4 | 使用3.8模型+DNN Vad,VPR0.5版本引擎 | |
6.21 | V3.9.3 | 在3.9版模型基础上,加入了dnn-based vad | |
6.8 | V3.8.3 | 在V3.8.2增强版 基础上,fix data buffer bug | |
6.5 | V3.8.2增强版 | 在V3.8.2 基础上,去掉尾Null数据(梦原把这一feature移到了Android-dev),设置default abs threshold=17.0 | |
6.5 | V3.8.2 | 在V3.8.2 基础上,去掉语音前后的context padding | |
6.4 | V3.8.1 | 在V3.8 model基础上,加入SVM VAD | |
6.4 | V3.9.1 | 在v3.9基础上,去掉语音前后的context padding | |
6.1 | V3.9 | 修改模型 训练数据:基于ali-phase2数据 在7500人的full-info模型上 进一步full-info得到的模型 | |
5.28 | V3.8 | 修改模型 训练数据:speech-ocean_datatang_7500_mix_clean_reverb_volume_noise;模型:ReLU 预先训练 3 个 epoches,然后用 full-info 自适应 200 个 iterations.修改最后传输数据为空值的bug | |
5.17 | V3.7 | 修复AudioRecord bug,将环形buffer改成线性。 | |
5.7 | V3.6 | 石颖大模型:reverbe+volume+noise+clean 总量为基本数据的3又三分之一倍 | |
4.27 | V3.5 | 小模型:仅添加noise 总量为基本数据的一半,人数不变 | |
4.24 | V3.4 | 修改bug | |
4.16 | V3.3 | 修改滚动样式 | |
4.3 | V3.0 | 依时间认证版本 | |
3.31 | v2.0 | 带反馈的认证版本 | |
3.25 | V1.0 | 盲认证版本 |