“ASR work Schedule”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“=Text Processing Team Schedule= ==Members== ===Former Members=== * Rong Liu (刘荣) : 优酷 * Xiaoxi Wang (王晓曦) : 图灵机器人 * Xi Ma (马习) : 清华...”为内容创建页面)
 
 
(7位用户的32个中间修订版本未显示)
第1行: 第1行:
=Text Processing Team Schedule=
+
=Speech Processing Team Schedule=
  
 
==Members==
 
==Members==
===Former Members===
 
* Rong Liu (刘荣) : 优酷
 
* Xiaoxi Wang (王晓曦) : 图灵机器人
 
* Xi Ma (马习) : 清华大学研究生
 
* DongXu Zhang (张东旭) : --
 
  
 
===Current Members===
 
===Current Members===
* Tianyi Luo (骆天一)
+
* Zhiyuan Tang
* Chao Xing (邢超)
+
* Lantian Li
* Qixin Wang (王琪鑫)
+
* Ying Shi
* Yiqiao Pan (潘一桥)
+
* Yunqi Cai
* Aodong Li (李傲冬)
+
* Wenqiang Du
* Ziwei Bai (白子薇)
+
* Yue Fan
* Aiting Liu (刘艾婷)
+
* Jiawen Kang
 +
* Ruiqi Liu
 +
* Yang Zhang
 +
 
 +
===Former Members===
 +
* Chao Liu: ChangTing Technology
 +
* Xiangtao Meng: China Construction Bank
 +
* Shi Yin: Huawei
 +
* Yiye Lin: University of Southern California
 +
* Sheng Su: Student of Beijing University of Posts and Telecommunications
 +
* Xuewei Zhang: Baidu
 +
* Xiangyu Zeng: Columbia University
 +
* Jingyi Lin
 +
* Yixiang Chen
 +
* Hang Luo
 +
* Yanqing Wang
 +
* Zhiyong Zhang
 +
* Mengyuan Zhao
  
 
==Work Process==
 
==Work Process==
===Similar questions senetence vector model training with RNN/LSTM and the attention RNN/LSTM chatting model training (Tianyi Luo)===
 
--------------------2016-04-22
 
* Speed up process of the test performance about theano version of Generationg the similar questions' vectors based on RNN.
 
--------------------2016-04-21
 
* Finish helping Teacher Wang to prepare for text group's presentation(Tang poetry and Songci generation and Intelligent QA system) for Tsinghua University's 105 anniversary.
 
* Submit our IJCAI paper to arxiv. (Solve a big problem about submitting the paper including Chinese chacracters. [http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/How_to_submit_the_latex_files_including_Chinese_characters_to_arxiv Solution])
 
* Optimize theano version of Generationg the similar questions' vectors based on RNN.
 
--------------------2016-04-20
 
* Finish submiting the camera version paper of IJCAI 2016.
 
* Update the version of Technical Report about Chinese Song Iambics generation.
 
--------------------2016-04-19
 
* Optimize theano version of Generationg the similar questions' vectors based on RNN.
 
--------------------2016-04-18
 
* Optimize theano version of Generationg the similar questions' vectors based on RNN.
 
* Finish implementing theano version of LSTM Max margin vector training.
 
  
===Reproduce DSSM Baseline (Chao Xing)===
+
[http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/Status_report Latest]
: 2016-04-28 : Given a talk to text team for some recently paper.
+
 
              Knowledge Base Completion via Search-Based Question Answering : [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/b/b1/Knowledge_Base_Completion_via_Search-Based_Question_Answering_-_Report.pdf pdf]
+
[[asr-progress 2017.08]]
              Open Domain Question Answering via Semantic Enrichment  : [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/1/15/Open_Domain_Question_Answering_via_Semantic_Enrichment_-_Report.pdf pdf]
+
 
              A Neural Conversational Model : [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/1/15/A_Neural_Conversational_Model_-_Report.pdf pdf]
+
[[asr-progress 2017.07]]
              And given a tiny results for CNN-DSSM in huilan's weekly report.
+
 
: 2016-04-27 : Code Multi-layer CNN, suffered from memory error in GPU in tensorflow.
+
[[asr-progress 2017.06]]
              So I run such test on CPU, should slow.
+
 
: 2016-04-26 : Code done tricky & analysis such tricky.
+
[[asr-progress 2017.04]]
: 2016-04-25 : Find a tricky to improve accuracy given by Tianyi.
+
 
            : Code for this tricky.
+
[[asr-progress 2017.01]]
: 2016-04-23 : Set a series of experiment set.
+
 
              1. Try deep CNN-DSSM, current model just follow proposed model contain one convolution layer, need to be a tuneable parameter.
+
[[asr-progress 2016.12]]
              2. Test whether mixture data effective to current model and deep CDSSM.
+
 
              3. Code Recurrent CNN-DSSM (new approach.)
+
[[asr-progress 2016.11]]
: 2016-04-22 : Find a problem : Use labs' gpu machine 970 iteration per time is 1537 second but huilan's server is just 7 second.
+
              Achieve reasonable results when apply max-margin method to CNN-DSSM model.
+
: 2016-04-21 : True DSSM model doesn't work well, analysis as below:
+
                1. Not exactly reproduce DSSM model, because the original one is English version, I just adapt it to Chinese but after word segmentation.
+
                  So the input is tri-gram words not tri-gram letter.
+
                2. Our dataset far from rich, because of we do not use pre-trained word vectors as initial vectors, we can hardly achieve good performance.
+
            : Request
+
                1. As we have rich pre-trained word vectors, maybe CDSSM or RDSSM corrected to our task.
+
                2. Different length of sequences seek to be fixed dimension vectors, just CNN and RNN can do such things, DNN can not do it by using
+
                  fix length of word vectors
+
            : Coding done CDSSM. Test for it's performance.
+
                One problem : When you install tensorflow by pip 0.8.0 and you want to use conv2d function by gpu, you need make sure you had already
+
                            install your cudnn's version as 4.0 not lastest 5.0.
+
: 2016-04-20 : Find reproduced DSSM model's bug, fix it.
+
: 2016-04-19 : Code mixture data model by less memory dependency done. Test it's performance.
+
: 2016-04-18 : Code mixture data model.
+
: 2016-04-16 : Code mixture data model, but face to memory error. Dr. Wang help me fix it.
+
: 2016-04-15 : Share Papers. Investigation a series of DSSM papers for future work. And show our intern students how to do research.
+
            : Original DSSM model : Learning Deep Structured Semantic Models for Web Search using Clickthrough Data [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/4/45/2013_-_Learning_Deep_Structured_Semantic_Models_for_Web_Search_using_Clickthrough_Data_-_Report.pdf pdf]
+
            : CNN based DSSM model : A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/b/b7/2014_-_A_Latent_Semantic_Model_with_Convolutional-Pooling_Structure_for_Information_Retrieval_-_Report.pdf pdf]
+
            : Use DSSM model for a new area : Modeling Interestingness with Deep Neural Networks [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/1/1f/2014_-_Modeling_Interestingness_with_Deep_Neural_Networks_-_Report.pdf pdf]
+
            : Latest approach for LSTM + RNN DSSM model : SEMANTIC MODELLING WITH LONG-SHORT-TERM MEMORY FOR INFORMATION RETRIEVAL [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/2/24/2015_-_SEMANTIC_MODELLING_WITH_LONG-SHORT-TERM_MEMORY_FOR_INFORMATION_RETRIEVAL_-_Report.pdf pdf]
+
  
: 2016-04-14 : Test dssm-dnn model, code dssm-cnn model.
+
[[asr-progress 2016.10]]
              Continue investigate deep neural question answering system.
+
: 2016-04-13 : test dssm model, investigate deep neural question answering system.
+
            : Share theano ppt [http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/%E6%96%87%E4%BB%B6:Theano-RBM.pptx theano]
+
            : Share tensorflow ppt [http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/%E6%96%87%E4%BB%B6:Tensorflow.pptx tensorflow]
+
: 2016-04-12 : Write done dssm tensor flow version.
+
: 2016-04-11 : Write tensorflow toolkit ppt for intern student.
+
: 2016-04-10 : Learn tensorflow toolkit.
+
: 2016-04-09 : Learn tensorflow toolkit.
+
: 2016-04-08 : Finish theano version.
+
  
===Deep Poem Processing With Image (Ziwei Bai)===
+
[[asr-progress 2016.09]]
: 2016-04-20 :combine my program with Qixin Wang's
+
: 2016-04-10 : web spider to catch a thousand pices of images.
+
: 2016-04-13 :1、download theano for python2.7。  2.debug cnn.py
+
: 2016-04-15 :web spider to catch 30 thousands pices of images and store them into a matrix
+
: 2016-04-16 :modify the code of CNN and spider
+
: 2016-04-17 :train convouloutional neural network
+
  
===RNN Piano Processing (Jiyuan Zhang)===
+
[[asr-progress ...2016.08|asr-progress 2016.08]]
:2016-4-12:select appropriate  midis and run rnnrbm model
+
:2016-4-13:view  rnnrbm model‘s  code
+
:2016-4-14~15:coding to select 4/4 beat of midis
+
:2016-4-17~22:run data, failed several times ,then modify code  and  view rnnrbm model's code
+
:2016-4-25~29:replace rnnrbm  with lstmrbm, then run lstmrbm's model
+
  
===Question & Answering (Aiting Liu)===
+
==Holiday plan==
: 2016-04-24 : make my biweekly report
+
[[2017 Spring Festival]]
: 2016-04-23 : read Fader's paper (2011)
+
: 2016-04-20 : read Fader's paper (2013)
+
: 2016-04-15 : learn dssm and sent2vec
+
: 2016-04-16 : try to figure out how the PARALAX dataset is constructed
+
: 2016-04-17 : download the PARALAX dataset and try to turn it into what we want it to be
+
  
===Generation Model (Aodong li)===
+
[[2020 Spring Festival]]
: 2016-05-05 : check in
+

2019年12月30日 (一) 02:30的最后版本

Speech Processing Team Schedule

Members

Current Members

  • Zhiyuan Tang
  • Lantian Li
  • Ying Shi
  • Yunqi Cai
  • Wenqiang Du
  • Yue Fan
  • Jiawen Kang
  • Ruiqi Liu
  • Yang Zhang

Former Members

  • Chao Liu: ChangTing Technology
  • Xiangtao Meng: China Construction Bank
  • Shi Yin: Huawei
  • Yiye Lin: University of Southern California
  • Sheng Su: Student of Beijing University of Posts and Telecommunications
  • Xuewei Zhang: Baidu
  • Xiangyu Zeng: Columbia University
  • Jingyi Lin
  • Yixiang Chen
  • Hang Luo
  • Yanqing Wang
  • Zhiyong Zhang
  • Mengyuan Zhao

Work Process

Latest

asr-progress 2017.08

asr-progress 2017.07

asr-progress 2017.06

asr-progress 2017.04

asr-progress 2017.01

asr-progress 2016.12

asr-progress 2016.11

asr-progress 2016.10

asr-progress 2016.09

asr-progress 2016.08

Holiday plan

2017 Spring Festival

2020 Spring Festival