“Zhiyuan Tang 2015-12-07”版本间的差异
来自cslt Wiki
(相同用户的一个中间修订版本未显示) | |||
第4行: | 第4行: | ||
1. launched experiments on 1400h-Chinese with CTC/nnet3/Kaldi; | 1. launched experiments on 1400h-Chinese with CTC/nnet3/Kaldi; | ||
− | 2. verified the code for conditioning learning of dnn. | + | 2. verified the code for conditioning learning of dnn using speech rate as extra input(s), results in [http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=tangzy&step=view_request&cvssid=480]; |
第17行: | 第17行: | ||
− | ==== End-to-End ==== | + | ==TASKS== |
+ | ====== End-to-End ====== | ||
*monophone ASR --Zhiyuan | *monophone ASR --Zhiyuan | ||
:*MPE | :*MPE | ||
:*CTC/nnet3/Kaldi | :*CTC/nnet3/Kaldi | ||
− | + | ===== conditioning learning ===== | |
− | === conditioning learning === | + | * language vector into multiple layers --Zhiyuan |
− | * language vector into multiple layers -- | + | |
:* a Chinese paper | :* a Chinese paper | ||
− | * speech rate into multiple layers -- | + | * speech rate into multiple layers --Zhiyuan |
:*verify the code for extra input(s) into DNN | :*verify the code for extra input(s) into DNN |
2015年12月7日 (一) 06:57的最后版本
Last week:
1. launched experiments on 1400h-Chinese with CTC/nnet3/Kaldi;
2. verified the code for conditioning learning of dnn using speech rate as extra input(s), results in [1];
This week:
1. more research about ctc/nnet3;
2. find the reason why language vector doesn't help;
3. something about Memory net.
TASKS
End-to-End
- monophone ASR --Zhiyuan
- MPE
- CTC/nnet3/Kaldi
conditioning learning
- language vector into multiple layers --Zhiyuan
- a Chinese paper
- speech rate into multiple layers --Zhiyuan
- verify the code for extra input(s) into DNN