“Text-2015-01-14”版本间的差异
(以“==share paper== ==choose paper== ==list paper==”为内容创建页面) |
(→list paper) |
||
(相同用户的2个中间修订版本未显示) | |||
第1行: | 第1行: | ||
− | ==share paper== | + | ==ready to share paper== |
+ | * E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[http://arxiv.org/pdf/1410.8498v2.pdf](Dong Wang) | ||
+ | * "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang) | ||
+ | * "embedding word tokens using a linear dynamical system"[http://people.cs.umass.edu/~belanger/belanger_lds.pdf](Bin Yuan) | ||
+ | |||
==choose paper== | ==choose paper== | ||
− | + | =list paper= | |
+ | ==Deep Learning and Representation Learning Workshop: NIPS 2014 --Accepted papers== | ||
+ | *Oral presentations: | ||
+ | |||
+ | cuDNN: Efficient Primitives for Deep Learning (#49)Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer | ||
+ | |||
+ | Distilling the Knowledge in a Neural Network (#65)Geoffrey Hinton, Oriol Vinyals, Jeff Dean | ||
+ | |||
+ | Supervised Learning in Dynamic Bayesian Networks (#54)Shamim Nemati, Ryan Adams | ||
+ | |||
+ | Deeply-Supervised Nets (#2)Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu | ||
+ | |||
+ | |||
+ | |||
+ | *Posters, morning session (11:30-14:45): | ||
+ | |||
+ | Unsupervised Feature Learning from Temporal Data (#3)Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun | ||
+ | |||
+ | Autoencoder Trees (#5)Ozan Irsoy, Ethem Alpaydin | ||
+ | |||
+ | Scheduled denoising autoencoders (#6)Krzysztof Geras, Charles Sutton | ||
+ | |||
+ | Learning to Deblur (#8)Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf | ||
+ | |||
+ | A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)Alireza Makhzani, Brendan Frey | ||
+ | |||
+ | "Mental Rotation" by Optimizing Transforming Distance (#11)Weiguang Ding, Graham Taylor | ||
+ | |||
+ | On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)Taichi Kiwaki, Kazuyuki Aihara | ||
+ | |||
+ | Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng | ||
+ | |||
+ | Understanding Locally Competitive Networks (#15)Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber | ||
+ | |||
+ | Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)Avraham Ruderman | ||
+ | |||
+ | Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)Ryo Karakida, Masato Okada, Shun-ichi Amari | ||
+ | |||
+ | Deep Tempering (#20)Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio | ||
+ | |||
+ | Learning Word Representations with Hierarchical Sparse Coding (#21)Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith | ||
+ | |||
+ | Deep Learning as an Opportunity in Virtual Screening (#23)Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter | ||
+ | |||
+ | Revisit Long Short-Term Memory: An Optimization Perspective (#24)Qi Lyu, J Zhu | ||
+ | |||
+ | Locally Scale-Invariant Convolutional Neural Networks (#26)Angjoo Kanazawa, David Jacobs, Abhishek Sharma | ||
+ | |||
+ | Deep Exponential Families (#28)Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei | ||
+ | |||
+ | Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh | ||
+ | |||
+ | Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)Phong Le, Willem Zuidema | ||
+ | |||
+ | Deep Multi-Instance Transfer Learning (#32)Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas | ||
+ | |||
+ | Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel | ||
+ | |||
+ | Retrofitting Word Vectors to Semantic Lexicons (#34)Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith | ||
+ | |||
+ | Deep Sequential Neural Network (#35)Ludovic Denoyer, Patrick Gallinari | ||
+ | |||
+ | Efficient Training Strategies for Deep Neural Network Language Models (#71)Holger Schwenk | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *Posters, afternoon session (17:00-18:30): | ||
+ | |||
+ | Deep Learning for Answer Sentence Selection (#36)Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman | ||
+ | |||
+ | Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman | ||
+ | |||
+ | Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)Sergey Levine, Pieter Abbeel | ||
+ | |||
+ | SimNets: A Generalization of Convolutional Networks (#41)Nadav Cohen, Amnon Shashua | ||
+ | |||
+ | Phonetics embedding learning with side information (#44)Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux | ||
+ | |||
+ | End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio | ||
+ | |||
+ | BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)Stephan Gouws, Yoshua Bengio, Greg Corrado | ||
+ | |||
+ | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio | ||
+ | |||
+ | Reweighted Wake-Sleep (#48)Jorg Bornschein, Yoshua Bengio | ||
+ | |||
+ | Explain Images with Multimodal Recurrent Neural Networks (#51)Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille | ||
+ | |||
+ | Rectified Factor Networks and Dropout (#53)Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter | ||
+ | |||
+ | Towards Deep Neural Network Architectures Robust to Adversarials (#55)Shixiang Gu, Luca Rigazio | ||
+ | |||
+ | Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)Jimmy Ba, Hui Yuan Xiong, Brendan Frey | ||
+ | |||
+ | Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)Himabindu Lakkaraju, Richard Socher, Chris Manning | ||
+ | |||
+ | Deep Directed Generative Autoencoders (#59)Sherjil Ozair, Yoshua Bengio | ||
+ | |||
+ | Conditional Generative Adversarial Nets (#60)Mehdi Mirza, Simon Osindero | ||
+ | |||
+ | Analyzing the Dynamics of Gated Auto-encoders (#61)Daniel Im, Graham Taylor | ||
+ | |||
+ | Representation as a Service (#63)Ouais Alsharif, Joelle Pineau, philip bachman | ||
+ | |||
+ | Provable Methods for Training Neural Networks with Sparse Connectivity (#66)Hanie Sedghi, Anima Anandkumar | ||
+ | |||
+ | Trust Region Policy Optimization (#67)John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel | ||
+ | |||
+ | Document Embedding with Paragraph Vectors (#68)Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado | ||
+ | |||
+ | Backprop-Free Auto-Encoders (#69)Dong-Hyun Lee, Yoshua Bengio | ||
+ | |||
+ | Rate-Distortion Auto-Encoders (#73)Luis Sanchez Giraldo, Jose Principe |
2015年1月12日 (一) 06:47的最后版本
目录
- E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[1](Dong Wang)
- "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang)
- "embedding word tokens using a linear dynamical system"[2](Bin Yuan)
choose paper
list paper
Deep Learning and Representation Learning Workshop: NIPS 2014 --Accepted papers
- Oral presentations:
cuDNN: Efficient Primitives for Deep Learning (#49)Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer
Distilling the Knowledge in a Neural Network (#65)Geoffrey Hinton, Oriol Vinyals, Jeff Dean
Supervised Learning in Dynamic Bayesian Networks (#54)Shamim Nemati, Ryan Adams
Deeply-Supervised Nets (#2)Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
- Posters, morning session (11:30-14:45):
Unsupervised Feature Learning from Temporal Data (#3)Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun
Autoencoder Trees (#5)Ozan Irsoy, Ethem Alpaydin
Scheduled denoising autoencoders (#6)Krzysztof Geras, Charles Sutton
Learning to Deblur (#8)Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf
A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)Alireza Makhzani, Brendan Frey
"Mental Rotation" by Optimizing Transforming Distance (#11)Weiguang Ding, Graham Taylor
On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)Taichi Kiwaki, Kazuyuki Aihara
Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng
Understanding Locally Competitive Networks (#15)Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber
Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)Avraham Ruderman
Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)Ryo Karakida, Masato Okada, Shun-ichi Amari
Deep Tempering (#20)Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio
Learning Word Representations with Hierarchical Sparse Coding (#21)Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith
Deep Learning as an Opportunity in Virtual Screening (#23)Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter
Revisit Long Short-Term Memory: An Optimization Perspective (#24)Qi Lyu, J Zhu
Locally Scale-Invariant Convolutional Neural Networks (#26)Angjoo Kanazawa, David Jacobs, Abhishek Sharma
Deep Exponential Families (#28)Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei
Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh
Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)Phong Le, Willem Zuidema
Deep Multi-Instance Transfer Learning (#32)Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel
Retrofitting Word Vectors to Semantic Lexicons (#34)Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith
Deep Sequential Neural Network (#35)Ludovic Denoyer, Patrick Gallinari
Efficient Training Strategies for Deep Neural Network Language Models (#71)Holger Schwenk
- Posters, afternoon session (17:00-18:30):
Deep Learning for Answer Sentence Selection (#36)Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)Sergey Levine, Pieter Abbeel
SimNets: A Generalization of Convolutional Networks (#41)Nadav Cohen, Amnon Shashua
Phonetics embedding learning with side information (#44)Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio
BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)Stephan Gouws, Yoshua Bengio, Greg Corrado
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
Reweighted Wake-Sleep (#48)Jorg Bornschein, Yoshua Bengio
Explain Images with Multimodal Recurrent Neural Networks (#51)Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille
Rectified Factor Networks and Dropout (#53)Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
Towards Deep Neural Network Architectures Robust to Adversarials (#55)Shixiang Gu, Luca Rigazio
Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)Jimmy Ba, Hui Yuan Xiong, Brendan Frey
Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)Himabindu Lakkaraju, Richard Socher, Chris Manning
Deep Directed Generative Autoencoders (#59)Sherjil Ozair, Yoshua Bengio
Conditional Generative Adversarial Nets (#60)Mehdi Mirza, Simon Osindero
Analyzing the Dynamics of Gated Auto-encoders (#61)Daniel Im, Graham Taylor
Representation as a Service (#63)Ouais Alsharif, Joelle Pineau, philip bachman
Provable Methods for Training Neural Networks with Sparse Connectivity (#66)Hanie Sedghi, Anima Anandkumar
Trust Region Policy Optimization (#67)John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel
Document Embedding with Paragraph Vectors (#68)Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado
Backprop-Free Auto-Encoders (#69)Dong-Hyun Lee, Yoshua Bengio
Rate-Distortion Auto-Encoders (#73)Luis Sanchez Giraldo, Jose Principe