“Sinovoice-2014-12-10”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以内容“=DNN training= ==Environment setting== * Another 3 3T disks are ready for RADI-0. * Another GPU machine was purchased. ==Corpora== * Scripts for confidence generati...”创建新页面)
 
第38行: 第38行:
 
|large LM, it 4, -5/-9  || 15.30 || -
 
|large LM, it 4, -5/-9  || 15.30 || -
 
|-
 
|-
large LM,  it 4, -6/-9  || 15.36 || -
+
|large LM,  it 4, -6/-9  || 15.36 || -
 
|-
 
|-
large LM, it 4, -7/-9    || 15.25 || -
+
|large LM, it 4, -7/-9    || 15.25 || -
 
|-
 
|-
large LM, it 5, -5/-9    || 14.17 || -
+
|large LM, it 5, -5/-9    || 14.17 || -
 
|-
 
|-
|small LM, it 5,  -5/-10 || 13.77 || -
+
|large LM, it 5,  -5/-10 || 13.77 || -
 
|-
 
|-
 
|}
 
|}

2014年2月10日 (一) 05:41的版本

DNN training

Environment setting

  • Another 3 3T disks are ready for RADI-0.
  • Another GPU machine was purchased.

Corpora

  • Scripts for confidence generation is ready for auto transcription
  • 300h telephone speech data (Sinovoice recording) were done


470 hour 8k training

  • 300h incremental training (IT) done
Model CE MPE1 MPE2 MPE3 MPE4
4k states 23.27/22.85 21.35/18.87 21.18/18.76 21.07/18.54 20.93/18.32
8k states 22.16/22.22 20.55/18.03 20.36/17.94 20.32/17.78 20.29/17.80
8k states + IT - 20.04/17.38 20.01/17.32 20.07/17.44 19.94/17.65

6000 hour 16k training

  • Ran CE DNN to iteration 5 (8400 states, 80000 pdf)
  • Testing results go down to 13% WER.
Model WER RT
small LM, it 4, -5/-9 15.80 -
large LM, it 4, -5/-9 15.30 -
large LM, it 4, -6/-9 15.36 -
large LM, it 4, -7/-9 15.25 -
large LM, it 5, -5/-9 14.17 -
large LM, it 5, -5/-10 13.77 -

Adaptation

DNN Decoder

  • Comparison between CLG and HCLG decoder