“2013-06-28”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以内容“== Data sharing == * LM count files still undelivered! == DNN progress == === Experiments === * Sparse DNN. 1. With Atlas without any change, on the ARM platform, ...”创建新页面)
(没有差异)

2013年6月28日 (五) 06:47的版本

Data sharing

  • LM count files still undelivered!

DNN progress

Experiments

  • Sparse DNN.

1. With Atlas without any change, on the ARM platform, obtained RT 2.0. Will change the Atlas code to support sparse matrices.

Tencent exps

GPU & CPU merge

  1. Hold

RNN LM progress

  • Use 100M text, 10k lexicon in training. Validation test set is obtained from the transcription of the Tencent online1 speech data.
100 hidden layer, 1 hidden layer, 3-gram
training time: 7 hour, 8GB
prediction time: quick, 8GB
3-gram PPL: 227.323 WER: 36%
RNN PPL: 170.056129 WER: 41%
3-gram+RNN: PPL: 0.25RNN+0.75 3-gram: 180.0 WER 35%
  • possibly a bug when computing PPL with the RNN toolkit.


Embedded progress

  • Status:
1000 test words + 2000 noise words
        before  |  after 
 utt    952        3317
%wer    6.26%     11.04%
 RT     0.07      0.20

This means the GMM-based system highly relies on the vocabulary. It may work well with small lexica, but difficult with large ones.

Run other optimization parameters:
 option   |   RT    |   %wer
 original    0.07       6.28
  -ds        0.06       6.33%
  -topn      0.06       6.80%  
  -maxwpf     -          -
  -maxhmmpf   -          - 
  -kdmaxdepth -          -
  -kdmaxbbi   -          -
  -pl_window  -          -


  • To be done
  1. sparse DNN based Kaldi engine
  2. sparse DNN based PS engine