“2024-10-14”版本间的差异
来自cslt Wiki
Luoxiaoxue(讨论 | 贡献) |
|||
| (16位用户的23个中间修订版本未显示) | |||
| 第6行: | 第6行: | ||
|Dong Wang | |Dong Wang | ||
|| | || | ||
| − | * | + | * AI handbook high-education version, experiment booklet |
| + | * Check AI primary school handbook (1-20) | ||
|| | || | ||
* | * | ||
| 第17行: | 第18行: | ||
|Lantian Li | |Lantian Li | ||
|| | || | ||
| − | * | + | * AI-Graph EN (20/50) |
| + | * Prepare CSTR intro report | ||
|| | || | ||
* | * | ||
| 第28行: | 第30行: | ||
|Ying Shi | |Ying Shi | ||
|| | || | ||
| − | * | + | * Finish Text enroll keywords spotting code & document and deliver to Wei & Du |
| + | * Cohort Overlap ASR code v0.0 | ||
| + | ** code has finished and training has been done | ||
| + | * Cohort Speech separation code v0.0 | ||
| + | ** code has finished training is in progress | ||
| + | * [https://z1et6d3xtb.feishu.cn/docx/OHjsdgVmhoXUGpxvh5tcaBN4nAh?from=from_copylink here] | ||
|| | || | ||
* | * | ||
| 第39行: | 第46行: | ||
|Zhenghai You | |Zhenghai You | ||
|| | || | ||
| − | * | + | * Exploring the role of speaker encoder in TSE and generality of SPK-AUG[https://z1et6d3xtb.feishu.cn/docx/GHF8doRjDo50ihxGUPpcsZgLncb?from=space_home_recent&pre_pathname=%2Fdrive%2Fhome%2F&previous_navigation_time=1728902573829] |
|| | || | ||
* | * | ||
| 第49行: | 第56行: | ||
|Junming Yuan | |Junming Yuan | ||
|| | || | ||
| − | * | + | * MT-Hubert exp[https://z1et6d3xtb.feishu.cn/docx/IXBzdx2OvoDbvLxBLmKcjGJZnvb]: |
| + | ** codebook set + infoNCE ---> FC+softmax+CE / FC+sigmoid+BCE | ||
| + | *** To reduce the learning rate can work. | ||
| + | ** verified the feat-mask MT-Hubert with different lr | ||
| + | ** time-mask MT-Hubert verification (in progress) | ||
|| | || | ||
* | * | ||
| 第71行: | 第82行: | ||
|Xiaolou Li | |Xiaolou Li | ||
|| | || | ||
| − | * | + | * AV-HuBERT discrete unit training (wer: ↓1.5-3%) |
| + | ** rethink how to prove the advantage or disadvantage of discrete unit? | ||
| + | * Dense connector experiments (in training) | ||
| + | * Double check the data of existing 3000h data in CVS2 | ||
| + | * Paper reading (discrete unit, VTS) | ||
|| | || | ||
| − | * | + | * Design a experiment to explain the performance of discrete unit |
| + | * Finish data double check | ||
| + | * Try to establish a simple VTS system based on our VSR system | ||
|| | || | ||
* | * | ||
| 第82行: | 第99行: | ||
|Zehua Liu | |Zehua Liu | ||
|| | || | ||
| − | * | + | *Av-Hubert(Frozen) as Encoder performe very bad(cer:80%)[https://z1et6d3xtb.feishu.cn/docx/JBsidACDVojhCaxFQLbcCVbsnAc?from=from_copylink] |
| + | **after finetune maybe better ,but still bad | ||
| + | *Qwen-14B perform better(47%) than Qwen-7B(50%) | ||
| + | *Finish In-Context-Learning code and is training | ||
| + | ** maybe i will get result very soon | ||
|| | || | ||
| − | * | + | *verify collected data with XiaoLou |
| + | *finish VTS data Acceptance report | ||
|| | || | ||
* | * | ||
| 第93行: | 第115行: | ||
|Pengqi Li | |Pengqi Li | ||
|| | || | ||
| − | * | + | * Evaluate TAO and LayerCAM(verification) reliability. |
| + | ** Exploring the Consistency of TAO and LayerCAM Results on different models and datasets. | ||
|| | || | ||
* | * | ||
| 第104行: | 第127行: | ||
|Wan Lin | |Wan Lin | ||
|| | || | ||
| − | * | + | * NS |
| + | ** poster | ||
| + | ** data preparing and processing | ||
| + | ** adjust the training code | ||
|| | || | ||
* | * | ||
| 第115行: | 第141行: | ||
|Tianhao Wang | |Tianhao Wang | ||
|| | || | ||
| − | * | + | * CLIPSep exps for 2-mix and 5-mix [https://z1et6d3xtb.feishu.cn/docx/DnJgdwtNhotEpIxH7zfcksETnte] |
| + | ** 2-mix(whole vggsound, 300 classes): SDR-mix = -1.1748, SDR-separate = 5.0145 | ||
| + | ** 5-mix(50 classes of vggsound): SDR-mix = -11.4529, SDR-separate = -0.4764 | ||
|| | || | ||
* | * | ||
| 第139行: | 第167行: | ||
|Zhenyu Zhou | |Zhenyu Zhou | ||
|| | || | ||
| − | * | + | *Model quantization version2 |
| + | *Multi-talker mix data preparation | ||
|| | || | ||
* | * | ||
| 第150行: | 第179行: | ||
|Junhui Chen | |Junhui Chen | ||
|| | || | ||
| − | * | + | * Prepare vb2 data |
| + | ** Too many utterances for training (out of memory), thinking a smart way to divide them. | ||
|| | || | ||
* | * | ||
| 第172行: | 第202行: | ||
|Yu Zhang | |Yu Zhang | ||
|| | || | ||
| − | * | + | * SocioDojo Llama version |
| + | ** news integration is adjusted once every 12 hours | ||
| + | ** wikipedia & google search is banned | ||
|| | || | ||
* | * | ||
| 第183行: | 第215行: | ||
|Wenqiang Du | |Wenqiang Du | ||
|| | || | ||
| − | * | + | *Check the data from past training models and update the KWS model again(Model testing) |
| + | ** Chinese, Cantonese, Minnan, Haining and Uyghur | ||
|| | || | ||
* | * | ||
| 第194行: | 第227行: | ||
|Yang Wei | |Yang Wei | ||
|| | || | ||
| − | * | + | * Train text enroll KWS model with updated code (in progress) |
|| | || | ||
* | * | ||
| 第214行: | 第247行: | ||
|Turi | |Turi | ||
|| | || | ||
| − | * | + | * Whisper model finetuning[https://uestc.feishu.cn/docx/LsVmd6Mr3o90U2xVULOcImPmnjb?from=from_copylink] |
|| | || | ||
* | * | ||
| 第222行: | 第255行: | ||
|Yue Gu | |Yue Gu | ||
|| | || | ||
| − | * | + | * revise the TASLP paper |
| + | * read several papers about accent and prosody | ||
|| | || | ||
* | * | ||
| 第231行: | 第265行: | ||
|Qi Qu | |Qi Qu | ||
|| | || | ||
| − | * | + | * AED: classifiers retrained w/ new method (suppression on negative stimuli) and improvement attested. |
|| | || | ||
* | * | ||
2024年10月14日 (一) 11:02的最后版本
| People | This Week | Next Week | Task Tracking (DeadLine) |
|---|---|---|---|
| Dong Wang |
|
|
|
| Lantian Li |
|
|
|
| Ying Shi |
|
|
|
| Zhenghai You |
|
|
|
| Junming Yuan |
|
|
|
| Chen Chen |
|
|
|
| Xiaolou Li |
|
|
|
| Zehua Liu |
|
|
|
| Pengqi Li |
|
|
|
| Wan Lin |
|
|
|
| Tianhao Wang |
|
|
|
| Xiaoxue Luo |
|
|
|
| Zhenyu Zhou |
|
|
|
| Junhui Chen |
|
|
|
| Jiaying Wang |
|
|
|
| Yu Zhang |
|
|
|
| Wenqiang Du |
|
|
|
| Yang Wei |
|
|
|
| Lily |
|
|
|
| Turi |
|
|
|
| Yue Gu |
|
|
|
| Qi Qu |
|
|
|