“第十八章 深度学习前沿”版本间的差异
来自cslt Wiki
(→演示链接) |
|||
(相同用户的16个中间修订版本未显示) | |||
第4行: | 第4行: | ||
*[[教学参考-18|教学参考]] | *[[教学参考-18|教学参考]] | ||
*[http://aigraph.cslt.org/courses/18/course-18.pptx 课件] | *[http://aigraph.cslt.org/courses/18/course-18.pptx 课件] | ||
+ | *小清爱提问:什么是词向量[http://aigraph.cslt.org/ai100/AI100-119-什么是词向量.pdf] | ||
+ | *小清爱提问:什么是序列到序列模型[http://aigraph.cslt.org/ai100/AI100-120-什么是序列到序列模型.pdf] | ||
+ | *小清爱提问:什么是注意力机制[http://aigraph.cslt.org/ai100/AI100-121-什么是注意力机制.pdf] | ||
+ | *小清爱提问:什么是自监督学习[http://aigraph.cslt.org/ai100/AI100-122-什么是自监督学习.pdf] | ||
+ | *小清爱提问:什么是对抗生成网络[http://aigraph.cslt.org/ai100/AI100-123-什么是对抗生成网络.pdf] | ||
+ | *小清爱提问:什么是变分自编码器[http://aigraph.cslt.org/ai100/AI100-124-什么是变分自编码器.pdf] | ||
==扩展阅读== | ==扩展阅读== | ||
− | + | *AI100问:什么是残差网络[http://aigraph.cslt.org/ai100/AI-100-118-什么是残差网络.pdf] | |
− | + | *AI100问:什么是词向量[http://aigraph.cslt.org/ai100/AI100-119-什么是词向量.pdf] | |
+ | *AI100问:什么是序列到序列模型[http://aigraph.cslt.org/ai100/AI100-120-什么是序列到序列模型.pdf] | ||
+ | *AI100问:什么是注意力机制[http://aigraph.cslt.org/ai100/AI100-121-什么是注意力机制.pdf] | ||
+ | *AI100问:什么是自监督学习[http://aigraph.cslt.org/ai100/AI100-122-什么是自监督学习.pdf] | ||
+ | *AI100问:什么是对抗生成网络[http://aigraph.cslt.org/ai100/AI100-123-什么是对抗生成网络.pdf] | ||
+ | *AI100问:什么是变分自编码器[http://aigraph.cslt.org/ai100/AI100-124-什么是变分自编码器.pdf] | ||
==视频展示== | ==视频展示== | ||
+ | * char embedding [http://aigraph.cslt.org/courses/18/mnist-embedding.mp4] | ||
+ | * word embedding [http://aigraph.cslt.org/courses/18/word-embedding.mp4] | ||
+ | * Picture embedding [http://aigraph.cslt.org/courses/18/picture-embedding.mp4] | ||
+ | * GAN training [http://aigraph.cslt.org/courses/18/GAN.mp4] | ||
+ | * VAE latent space [http://aigraph.cslt.org/courses/18/VAE-space.mp4] | ||
+ | * VAE training process [http://aigraph.cslt.org/courses/18/VAE-training.mp4] | ||
==演示链接== | ==演示链接== | ||
− | * | + | * Word embedding online training [https://remykarem.github.io/word2vec-demo/] |
− | * | + | * Word Embedding [https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/] |
− | * | + | * WebVectors: Word Embedding Online [http://vectors.nlpl.eu/explore/embeddings/en/] |
− | * | + | * 那些不存在的人 [https://thispersondoesnotexist.com/] |
+ | * GAN painting,在图上添加或移除内容 [http://gandissect.res.ibm.com/ganpaint.html?project=churchoutdoor&layer=layer4] | ||
==开发者资源== | ==开发者资源== | ||
+ | * Word embedding [https://rpubs.com/alipphardt/478255][https://github.com/tmikolov/word2vec] | ||
+ | * Facebook sequence to sequence model [https://github.com/facebookresearch/fairseq] | ||
+ | * Keras sequence to sequence mdoel, very simple [https://github.com/farizrahman4u/seq2seq] | ||
+ | * A simple GAN implementation [https://iq.opengenus.org/beginners-guide-to-generative-adversarial-networks/] | ||
+ | * Pytroch-GAN: A large amount of GAN implementation [https://github.com/eriklindernoren/PyTorch-GAN] | ||
+ | * A collectio nof generative models (GAN/VAE/RBM) [https://github.com/wiseodd/generative-models] | ||
2022年8月8日 (一) 01:53的最后版本
教学资料
- 教学参考
- 课件
- 小清爱提问:什么是词向量[1]
- 小清爱提问:什么是序列到序列模型[2]
- 小清爱提问:什么是注意力机制[3]
- 小清爱提问:什么是自监督学习[4]
- 小清爱提问:什么是对抗生成网络[5]
- 小清爱提问:什么是变分自编码器[6]
扩展阅读
- AI100问:什么是残差网络[7]
- AI100问:什么是词向量[8]
- AI100问:什么是序列到序列模型[9]
- AI100问:什么是注意力机制[10]
- AI100问:什么是自监督学习[11]
- AI100问:什么是对抗生成网络[12]
- AI100问:什么是变分自编码器[13]
视频展示
- char embedding [14]
- word embedding [15]
- Picture embedding [16]
- GAN training [17]
- VAE latent space [18]
- VAE training process [19]
演示链接
- Word embedding online training [20]
- Word Embedding [21]
- WebVectors: Word Embedding Online [22]
- 那些不存在的人 [23]
- GAN painting,在图上添加或移除内容 [24]
开发者资源
- Word embedding [25][26]
- Facebook sequence to sequence model [27]
- Keras sequence to sequence mdoel, very simple [28]
- A simple GAN implementation [29]
- Pytroch-GAN: A large amount of GAN implementation [30]
- A collectio nof generative models (GAN/VAE/RBM) [31]
高级读者
- He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.[32]
- Bengio Y, Ducharme R, Vincent P. A neural probabilistic language model[J]. Advances in neural information processing systems, 2000, 13. [33]
- Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013. [34]
- Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 815-823. [35]
- Li C, Ma X, Jiang B, et al. Deep speaker: an end-to-end neural speaker embedding system[J]. arXiv preprint arXiv:1705.02304, 2017. [36]
- Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI conference on artificial intelligence. 2015. [37]
- Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[J]. Advances in neural information processing systems, 2014, 27. [38]
- Liu Y, Liu D, Lv J, et al. Generating Chinese poetry from images via concrete and abstract information[C]//2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8. [39]
- Sun D, Ren T, Li C, et al. Learning to write stylized chinese characters by reading a handful of examples[J]. arXiv preprint arXiv:1712.06424, 2017. [40]
- Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014. [41]
- Xu K, Ba J, Kiros R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//International conference on machine learning. PMLR, 2015: 2048-2057. [42]
- Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30. [43]
- Liu X, Zhang F, Hou Z, et al. Self-supervised learning: Generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2021. [44]
- Schneider S, Baevski A, Collobert R, et al. wav2vec: Unsupervised pre-training for speech recognition[J]. arXiv preprint arXiv:1904.05862, 2019. [45]
- Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]//European conference on computer vision. Springer, Cham, 2016: 69-84. [46]
- Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018. [47]
- Brown T, Mann B, Ryder N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901. [48]
- Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9.[]
- Ethayarajh K. How contextual are contextualized word representations? comparing the geometry of BERT, ELMo, and GPT-2 embeddings[J]. arXiv preprint arXiv:1909.00512, 2019. [49]
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27. [50]
- Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013. [51]
- 王东,机器学习导论,第三章,神经模型,2021,清华大学出版社 [52]
- Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning [53]