“2022-02-28”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
 
(5位用户的5个中间修订版本未显示)
第17行: 第17行:
 
|Yunqi Cai
 
|Yunqi Cai
 
||   
 
||   
*NCFS project
+
* NCFS project
 
||
 
||
 
*  
 
*  
第29行: 第29行:
 
||
 
||
 
* Push CNCSRC (Update Sunine)
 
* Push CNCSRC (Update Sunine)
* Submit ASVSpoof response
+
* Finish ASVSpoof response
 
* Polish C-P Map
 
* Polish C-P Map
 
||
 
||
第52行: 第52行:
 
|Haoran Sun
 
|Haoran Sun
 
||  
 
||  
*  
+
* Autovc debug
 
||
 
||
*  
+
* AutoVC with adversarial training
 +
* odyssey paper
 
||
 
||
 
*   
 
*   
第76行: 第77行:
 
|Pengqi Li
 
|Pengqi Li
 
||   
 
||   
*  
+
* Verify the reliability of visualization methods on small data models
 
||
 
||
*  
+
* Experiment and analyze visualization methods on big data model
 
||
 
||
 
*   
 
*   
第97行: 第98行:
 
|Zixi Yan
 
|Zixi Yan
 
||   
 
||   
*
+
* Asr experiments on different layers of multilingual W2V model
 
||
 
||
 
*
 
*
第118行: 第119行:
 
|Haoyu Jiang
 
|Haoyu Jiang
 
||  
 
||  
*
+
* Train the CN-Celeb baseline
 
||
 
||
*
+
* Go on training
 +
* Prepare data
 
||
 
||
 
*   
 
*   

2022年3月6日 (日) 13:53的最后版本

People This Week Next Week Task Tracking (DeadLine)
Dong Wang
  • Investigation on IB/VC
  • Odyssey paper
  • Odyssey paper
Yunqi Cai
  • NCFS project
Lantian Li
  • Push CNCSRC (Update Sunine)
  • Finish ASVSpoof response
  • Polish C-P Map
  • Odyssey paper
Ying Shi
Haoran Sun
  • Autovc debug
  • AutoVC with adversarial training
  • odyssey paper
Chen Chen
  • Review papers about lip-reading & audio-visual speech recognization
  • Done: Prepare data & environment for experiments of AV-HuBERT
  • Review papers about lip-reading & audio-visual speech recognization
  • Do experimrnts of AV-HuBERT
Pengqi Li
  • Verify the reliability of visualization methods on small data models
  • Experiment and analyze visualization methods on big data model
Weida Liang
Zixi Yan
  • Asr experiments on different layers of multilingual W2V model
Sirui Li
  • Find and learn the mose system
  • Train and test the mose system
Haoyu Jiang
  • Train the CN-Celeb baseline
  • Go on training
  • Prepare data
Ruihai Hou
  • finish speaker diarization interface and generate diarization figure
Renmiao Chen
  • test and adjust single-modality modal
  • learn and use decoupled PLDA for cross-modal test