“ASR:2015-10-19”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“==Speech Processing == === AM development === ==== Environment ==== * repair laptop ==== RNN AM==== *train monophone RNN --zhiyuan :* decode using 5-gram :* the t...”为内容创建页面)
 
Speech Processing
第3行: 第3行:
  
 
==== Environment ====
 
==== Environment ====
* repair laptop
 
 
  
 
==== RNN AM====
 
==== RNN AM====
 
*train monophone RNN --zhiyuan
 
*train monophone RNN --zhiyuan
:* decode using 5-gram
+
:* end to end MPE
:* the train method of batch 
+
:* test using another test set
+
 
* train RNN MPE using large dataset--mengyuan
 
* train RNN MPE using large dataset--mengyuan
:* diverge problem
+
:* try adaptation method using Daohangquan dataset
:* try adaptation method
+
 
+
  
 
====Learning rate tunning====
 
====Learning rate tunning====
第22行: 第16行:
 
* hold  
 
* hold  
 
* compute EER with kaldi
 
* compute EER with kaldi
 +
 +
===Decision tree===
 +
* decision tree balance using 100h Chinese and 20h English --zhiyong
  
 
====Data selection unsupervised learning====
 
====Data selection unsupervised learning====
第30行: 第27行:
  
 
====RNN-DAE(Deep based Auto-Encode-RNN)====
 
====RNN-DAE(Deep based Auto-Encode-RNN)====
 +
* hold
 
* RNN-DAE has worse performance than DNN-DAE because training dataset is small  
 
* RNN-DAE has worse performance than DNN-DAE because training dataset is small  
 
* extract real room impulse to generate WSJ reverberation data, and then train RNN-DAE   
 
* extract real room impulse to generate WSJ reverberation data, and then train RNN-DAE   
  
 
===Ivector&Dvector based ASR===  
 
===Ivector&Dvector based ASR===  
* dark knowledge
+
* learning from ivector --Lantian
:* has much worse performance than baseline (EER: base 29%  dark knowledge 48%)
+
:* CNN ivector learning
 +
:* DNN ivector learning
 
* binary ivector  
 
* binary ivector  
* metric learning  
+
* metric learning
 +
 
  
 
===language vector===
 
===language vector===
* hold
 
 
* write a paper--zhiyuan
 
* write a paper--zhiyuan
 +
:*hold
 
* language vector is added to multi hidden layers--zhiyuan  
 
* language vector is added to multi hidden layers--zhiyuan  
 
* RNN language vector
 
* RNN language vector
第49行: 第49行:
 
* multi-stream training --Sheng Su
 
* multi-stream training --Sheng Su
 
:*two GPUs work well, but four GPUs divergent
 
:*two GPUs work well, but four GPUs divergent
* solve the problem of buffer-- Sheng Su
 
 
* kaldi-nnet3 --Xuewei
 
* kaldi-nnet3 --Xuewei
  
 
===multi-task===
 
===multi-task===
* write code according to selt-information neural structure learning --mengyuan
+
* test according to selt-information neural structure learning --mengyuan
 
* speech rate learning --xiangyu
 
* speech rate learning --xiangyu
  

2015年10月19日 (一) 08:42的版本

Speech Processing

AM development

Environment

RNN AM

  • train monophone RNN --zhiyuan
  • end to end MPE
  • train RNN MPE using large dataset--mengyuan
  • try adaptation method using Daohangquan dataset

Learning rate tunning

  • sequence training -Xiangyu

Mic-Array

  • hold
  • compute EER with kaldi

Decision tree

  • decision tree balance using 100h Chinese and 20h English --zhiyong

Data selection unsupervised learning

  • hold
  • acoustic feature based submodular using Pingan dataset --zhiyong
  • write code to speed up --zhiyong
  • curriculum learning --zhiyong

RNN-DAE(Deep based Auto-Encode-RNN)

  • hold
  • RNN-DAE has worse performance than DNN-DAE because training dataset is small
  • extract real room impulse to generate WSJ reverberation data, and then train RNN-DAE

Ivector&Dvector based ASR

  • learning from ivector --Lantian
  • CNN ivector learning
  • DNN ivector learning
  • binary ivector
  • metric learning


language vector

  • write a paper--zhiyuan
  • hold
  • language vector is added to multi hidden layers--zhiyuan
  • RNN language vector
  • hold

multi-GPU

  • multi-stream training --Sheng Su
  • two GPUs work well, but four GPUs divergent
  • kaldi-nnet3 --Xuewei

multi-task

  • test according to selt-information neural structure learning --mengyuan
  • speech rate learning --xiangyu

=Neutral picture style transfer

  • hold
  • reproduced the result of the paper "A neutral algorithm of artistic style" --Zhiyuan, Xuewei
  • while subject to the GPU's memory, limited to inception net with sgd optimizer (VGG network with the default L-BFGS optimizer consumes very much memory, which is better)

Multi-task learning

  • train model using speech rate --xiangyu
  • speech recognition plus speaker reconition --xiangyu,lantian,zhiyuan

Text Processing

RNN LM

  • character-lm rnn(hold)
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

Neural Based Document Classification

  • (hold)

RNN Rank Task

  • Test.
  • Paper: RNN Rank Net.
  • (hold)
  • Output rank information.

Graph RNN

  • Entity path embeded to entity.
  • (hold)

RNN Word Segment

  • Set bound to word segment.
  • (hold)

Seq to Seq(09-15)

  • Review papers.
  • Reproduce baseline. (08-03 <--> 08-17)

Order representation

  • Nested Dropout
  • semi-linear --> neural based auto-encoder.
  • modify the objective function(hold)

Balance Representation

  • Find error signal

Recommendation

  • Reproduce baseline.
  • LDA matrix dissovle.
  • LDA (Text classification & Recommendation System) --> AAAI

RNN based QA

  • Read Source Code.
  • Attention based QA.
  • Coding.

RNN Poem Process

  • Seq based BP.
  • (hold)

Text Group Intern Project

Buddhist Process

  • (hold)

RNN Poem Process

  • Done by Haichao yu & Chaoyuan zuo Mentor : Tianyi Luo.

RNN Document Vector

  • (hold)

Image Baseline

  • Demo Release.
  • Paper Report.
  • Read CNN Paper.

Text Intuitive Idea

Trace Learning

  • (Hold)

Match RNN

  • (Hold)

financial group

model research

  • RNN
  • online model, update everyday
  • modify cost function and learning method
  • add more feature

rule combination

  • GA method to optimize the model

basic rule

  • classical tenth model

multiple-factor

  • add more factor
  • use sparse model

display

  • bug fixed
  • buy rule fixed

data

  • data api
  • download the future data and factor data