“ASR:2015-04-08”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
Lr讨论 | 贡献
Text Processing
 
第41行: 第41行:
 
* similar word extension in FST
 
* similar word extension in FST
 
:* check the formula using Bayes and experiment  
 
:* check the formula using Bayes and experiment  
 +
:* add more test data
 +
:* test the baseline(no weight) and different weight method
  
 
====RNN LM====
 
====RNN LM====
第49行: 第51行:
  
 
====W2V based doc classification====
 
====W2V based doc classification====
* corpus ready
+
* reproducible test using English data
* learn some benchmark.
+
* Code new version spherical word vector.
 +
* Accomplish movMF model
  
 
===Translation===
 
===Translation===
第58行: 第61行:
 
===Sparse NN in NLP===
 
===Sparse NN in NLP===
 
* prepare the ACL
 
* prepare the ACL
:* check the code to find the problem .
+
:* test result is ok now[http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=lr&step=view_request&cvssid=344].
:* increase the dimension
+
:* find the new direction.
:* use different test set,but the result is not good.
+
  
 
===online learning===
 
===online learning===
 
* data is ready.prepare the ACL paper
 
* data is ready.prepare the ACL paper
:* prepare sougouQ data and test it using current online learning method
+
:* finish some test.
:* baseline is not normal.
+
:* test the result on different time.
 +
 
 +
===relation classifier===
 +
* check code and find the problem that result is different on sigmoid and tanh

2015年4月8日 (三) 10:50的最后版本

Speech Processing

AM development

Environment

  • grid-11 often shut down automatically, too slow computation speed.


RNN AM


Mic-Array

  • investigate alpha parameter in time domian and frquency domain
  • ALPHA>=0


Convolutive network

  • HOLD
  • CNN + DNN feature fusion

RNN-DAE(Deep based Auto-Encode-RNN)


Speaker ID

Ivector based ASR

Text Processing

tag LM

  • similar word extension in FST
  • check the formula using Bayes and experiment
  • add more test data
  • test the baseline(no weight) and different weight method

RNN LM

  • rnn
  • code the character-lm using Theano
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

W2V based doc classification

  • reproducible test using English data
  • Code new version spherical word vector.
  • Accomplish movMF model

Translation

  • v5.0 demo released
  • cut the dict and use new segment-tool

Sparse NN in NLP

  • prepare the ACL
  • test result is ok now[1].
  • find the new direction.

online learning

  • data is ready.prepare the ACL paper
  • finish some test.
  • test the result on different time.

relation classifier

  • check code and find the problem that result is different on sigmoid and tanh