“ASR:2015-04-08”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“目录 [隐藏] 1 Speech Processing 1.1 AM development 1.1.1 Environment 1.1.2 RNN AM 1.1.3 Mic-Array 1.1.4 Convolutive network 1.1.5 RNN-DAE(Deep based Auto-Encode...”为内容创建页面)
 
Zxw讨论 | 贡献
(清空页面)
第1行: 第1行:
目录 [隐藏]
 
1 Speech Processing
 
1.1 AM development
 
1.1.1 Environment
 
1.1.2 RNN AM
 
1.1.3 Mic-Array
 
1.1.4 Convolutive network
 
1.1.5 RNN-DAE(Deep based Auto-Encode-RNN)
 
1.2 Speaker ID
 
1.3 Ivector based ASR
 
2 Text Processing
 
2.1 tag LM
 
2.1.1 RNN LM
 
2.1.2 W2V based doc classification
 
2.2 Translation
 
2.3 Sparse NN in NLP
 
2.4 online learning
 
Speech Processing[编辑]
 
AM development[编辑]
 
Environment[编辑]
 
grid-11 often shut down automatically, too slow computation speed.
 
  
RNN AM[编辑]
 
details at http://liuc.cslt.org/pages/rnnam.html
 
tuning parameters on monophone NN
 
run using wsj,MPE
 
 
Mic-Array[编辑]
 
investigate alpha parameter in time domian and frquency domain
 
ALPHA>=0
 
 
Convolutive network[编辑]
 
HOLD
 
CNN + DNN feature fusion
 
RNN-DAE(Deep based Auto-Encode-RNN)[编辑]
 
HOLD -Zhiyong
 
http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=261
 
 
Speaker ID[编辑]
 
DNN-based sid --Yiye
 
Decode --Yiye
 
http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=327
 
Ivector based ASR[编辑]
 
http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?step=view_request&cvssid=340
 
Ivector dimention is smaller, performance is better
 
Augument to hidden layer is better than input layer
 
train on wsj(testbase dev93+evl92)
 
Text Processing[编辑]
 
tag LM[编辑]
 
similar word extension in FST
 
check the formula using Bayes and experiment
 
RNN LM[编辑]
 
rnn
 
code the character-lm using Theano
 
lstm+rnn
 
check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
 
W2V based doc classification[编辑]
 
corpus ready
 
learn some benchmark.
 
Translation[编辑]
 
v5.0 demo released
 
cut the dict and use new segment-tool
 
Sparse NN in NLP[编辑]
 
prepare the ACL
 
check the code to find the problem .
 
increase the dimension
 
use different test set,but the result is not good.
 
online learning[编辑]
 
data is ready.prepare the ACL paper
 
prepare sougouQ data and test it using current online learning method
 
baseline is not normal.
 

2015年4月8日 (三) 07:27的版本