“ASR:2015-03-30”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
Zxw讨论 | 贡献
Speech Processing
 
(1位用户的2个中间修订版本未显示)
第4行: 第4行:
 
==== Environment ====
 
==== Environment ====
 
* grid-11 often shut down automatically, too slow computation speed.
 
* grid-11 often shut down automatically, too slow computation speed.
* GPU has being repired.--Xuewei
+
 
  
 
==== RNN AM====
 
==== RNN AM====
 
* details at http://liuc.cslt.org/pages/rnnam.html
 
* details at http://liuc.cslt.org/pages/rnnam.html
* tuning parameters on monophone NN  
+
* tuning parameters on monophone NN
 +
* run using wsj,MPE 
  
  
 
==== Mic-Array ====
 
==== Mic-Array ====
 
* investigate alpha parameter in time domian and frquency domain  
 
* investigate alpha parameter in time domian and frquency domain  
 +
* ALPHA>=0
  
====Dropout & Maxout & rectifier ====
 
* HOLD
 
* Need to solve the too small learning-rate problem
 
* 20h small scale sparse dnn with rectifier. --Mengyuan
 
* 20h small scale sparse dnn with Maxout/rectifier based on weight-magnitude-pruning. --Mengyuan Zhao
 
  
 
====Convolutive network====
 
====Convolutive network====
 
* HOLD
 
* HOLD
 
:* CNN + DNN feature fusion
 
:* CNN + DNN feature fusion
:* reproduce experiments -- Yiye
 
  
 
====RNN-DAE(Deep based Auto-Encode-RNN)====
 
====RNN-DAE(Deep based Auto-Encode-RNN)====
第29行: 第25行:
 
* http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=261
 
* http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=261
  
====Speech rate training====
 
:* http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=268
 
:* Technical report HOLD.-- Xiangyu Zeng, Shi Yin
 
:* Paper for NCMMSC done
 
 
====Neural network visulization====
 
* http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=324
 
* Technical report done --Mian Wang.
 
  
 
===Speaker ID===   
 
===Speaker ID===   
 
:* DNN-based sid --Yiye
 
:* DNN-based sid --Yiye
 +
:* Decode --Yiye
 
:* http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=327
 
:* http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=327
  
第46行: 第35行:
 
:* Ivector dimention is smaller, performance is better
 
:* Ivector dimention is smaller, performance is better
 
:* Augument to hidden layer is better than input layer
 
:* Augument to hidden layer is better than input layer
:* write paper for interspeech -- Xuewei
+
:* train on wsj(testbase dev93+evl92)
  
 
==Text Processing==
 
==Text Processing==
 
===tag LM===
 
===tag LM===
 
* similar word extension in FST
 
* similar word extension in FST
:* check the formula using Bays and experiment  
+
:* check the formula using Bayes and experiment  
  
 
====RNN LM====
 
====RNN LM====
第60行: 第49行:
  
 
====W2V based doc classification====
 
====W2V based doc classification====
* data prepare.
+
* corpus ready
*  
+
* learn some benchmark.
 +
 
 
===Translation===
 
===Translation===
 
* v5.0 demo released
 
* v5.0 demo released

2015年4月1日 (三) 05:39的最后版本

Speech Processing

AM development

Environment

  • grid-11 often shut down automatically, too slow computation speed.


RNN AM


Mic-Array

  • investigate alpha parameter in time domian and frquency domain
  • ALPHA>=0


Convolutive network

  • HOLD
  • CNN + DNN feature fusion

RNN-DAE(Deep based Auto-Encode-RNN)


Speaker ID

Ivector based ASR

Text Processing

tag LM

  • similar word extension in FST
  • check the formula using Bayes and experiment

RNN LM

  • rnn
  • code the character-lm using Theano
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

W2V based doc classification

  • corpus ready
  • learn some benchmark.

Translation

  • v5.0 demo released
  • cut the dict and use new segment-tool

Sparse NN in NLP

  • prepare the ACL
  • check the code to find the problem .
  • increase the dimension
  • use different test set,but the result is not good.

online learning

  • data is ready.prepare the ACL paper
  • prepare sougouQ data and test it using current online learning method
  • baseline is not normal.