“Text-2015-01-14”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“==share paper== ==choose paper== ==list paper==”为内容创建页面)
 
Lr讨论 | 贡献
list paper
 
(相同用户的2个中间修订版本未显示)
第1行: 第1行:
==share paper==
+
==ready to share paper==
 +
* E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[http://arxiv.org/pdf/1410.8498v2.pdf](Dong Wang)
 +
* "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang)
 +
* "embedding word tokens using a linear dynamical system"[http://people.cs.umass.edu/~belanger/belanger_lds.pdf](Bin Yuan)
 +
 
 
==choose paper==
 
==choose paper==
==list paper==
+
=list paper=
 +
==Deep Learning and Representation Learning Workshop: NIPS 2014 --Accepted papers==
 +
*Oral presentations:
 +
 
 +
cuDNN: Efficient Primitives for Deep Learning (#49)Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer
 +
 
 +
Distilling the Knowledge in a Neural Network (#65)Geoffrey Hinton, Oriol Vinyals, Jeff Dean
 +
 
 +
Supervised Learning in Dynamic Bayesian Networks (#54)Shamim Nemati, Ryan Adams
 +
 
 +
Deeply-Supervised Nets (#2)Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
 +
 
 +
 
 +
 
 +
*Posters, morning session (11:30-14:45):
 +
 
 +
Unsupervised Feature Learning from Temporal Data (#3)Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun
 +
 
 +
Autoencoder Trees (#5)Ozan Irsoy, Ethem Alpaydin
 +
 
 +
Scheduled denoising autoencoders (#6)Krzysztof Geras, Charles Sutton
 +
 
 +
Learning to Deblur (#8)Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf
 +
 
 +
A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)Alireza Makhzani, Brendan Frey
 +
 
 +
"Mental Rotation" by Optimizing Transforming Distance (#11)Weiguang Ding, Graham Taylor
 +
 
 +
On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)Taichi Kiwaki, Kazuyuki Aihara
 +
 
 +
Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng
 +
 
 +
Understanding Locally Competitive Networks (#15)Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber
 +
 
 +
Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)Avraham Ruderman
 +
 
 +
Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)Ryo Karakida, Masato Okada, Shun-ichi Amari
 +
 
 +
Deep Tempering (#20)Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio
 +
 
 +
Learning Word Representations with Hierarchical Sparse Coding (#21)Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith
 +
 
 +
Deep Learning as an Opportunity in Virtual Screening (#23)Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter
 +
 
 +
Revisit Long Short-Term Memory: An Optimization Perspective (#24)Qi Lyu, J Zhu
 +
 
 +
Locally Scale-Invariant Convolutional Neural Networks (#26)Angjoo Kanazawa, David Jacobs, Abhishek Sharma
 +
 
 +
Deep Exponential Families (#28)Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei
 +
 
 +
Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh
 +
 
 +
Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)Phong Le, Willem Zuidema
 +
 
 +
Deep Multi-Instance Transfer Learning (#32)Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas
 +
 
 +
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel
 +
 
 +
Retrofitting Word Vectors to Semantic Lexicons (#34)Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith
 +
 
 +
Deep Sequential Neural Network (#35)Ludovic Denoyer, Patrick Gallinari
 +
 
 +
Efficient Training Strategies for Deep Neural Network Language Models (#71)Holger Schwenk
 +
 
 +
 
 +
 
 +
 
 +
*Posters, afternoon session (17:00-18:30):
 +
 
 +
Deep Learning for Answer Sentence Selection (#36)Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman
 +
 
 +
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
 +
 
 +
Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)Sergey Levine, Pieter Abbeel
 +
 
 +
SimNets: A Generalization of Convolutional Networks (#41)Nadav Cohen, Amnon Shashua
 +
 
 +
Phonetics embedding learning with side information (#44)Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux
 +
 
 +
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio
 +
 
 +
BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)Stephan Gouws, Yoshua Bengio, Greg Corrado
 +
 
 +
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
 +
 
 +
Reweighted Wake-Sleep (#48)Jorg Bornschein, Yoshua Bengio
 +
 
 +
Explain Images with Multimodal Recurrent Neural Networks (#51)Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille
 +
 
 +
Rectified Factor Networks and Dropout (#53)Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
 +
 
 +
Towards Deep Neural Network Architectures Robust to Adversarials (#55)Shixiang Gu, Luca Rigazio
 +
 
 +
Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)Jimmy Ba, Hui Yuan Xiong, Brendan Frey
 +
 
 +
Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)Himabindu Lakkaraju, Richard Socher, Chris Manning
 +
 
 +
Deep Directed Generative Autoencoders (#59)Sherjil Ozair, Yoshua Bengio
 +
 
 +
Conditional Generative Adversarial Nets (#60)Mehdi Mirza, Simon Osindero
 +
 
 +
Analyzing the Dynamics of Gated Auto-encoders (#61)Daniel Im, Graham Taylor
 +
 
 +
Representation as a Service (#63)Ouais Alsharif, Joelle Pineau, philip bachman
 +
 
 +
Provable Methods for Training Neural Networks with Sparse Connectivity (#66)Hanie Sedghi, Anima Anandkumar
 +
 
 +
Trust Region Policy Optimization (#67)John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel
 +
 
 +
Document Embedding with Paragraph Vectors (#68)Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado
 +
 
 +
Backprop-Free Auto-Encoders (#69)Dong-Hyun Lee, Yoshua Bengio
 +
 
 +
Rate-Distortion Auto-Encoders (#73)Luis Sanchez Giraldo, Jose Principe

2015年1月12日 (一) 06:47的最后版本

ready to share paper

  • E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[1](Dong Wang)
  • "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang)
  • "embedding word tokens using a linear dynamical system"[2](Bin Yuan)

choose paper

list paper

Deep Learning and Representation Learning Workshop: NIPS 2014 --Accepted papers

  • Oral presentations:

cuDNN: Efficient Primitives for Deep Learning (#49)Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer

Distilling the Knowledge in a Neural Network (#65)Geoffrey Hinton, Oriol Vinyals, Jeff Dean

Supervised Learning in Dynamic Bayesian Networks (#54)Shamim Nemati, Ryan Adams

Deeply-Supervised Nets (#2)Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu


  • Posters, morning session (11:30-14:45):

Unsupervised Feature Learning from Temporal Data (#3)Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun

Autoencoder Trees (#5)Ozan Irsoy, Ethem Alpaydin

Scheduled denoising autoencoders (#6)Krzysztof Geras, Charles Sutton

Learning to Deblur (#8)Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf

A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)Alireza Makhzani, Brendan Frey

"Mental Rotation" by Optimizing Transforming Distance (#11)Weiguang Ding, Graham Taylor

On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)Taichi Kiwaki, Kazuyuki Aihara

Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng

Understanding Locally Competitive Networks (#15)Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber

Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)Avraham Ruderman

Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)Ryo Karakida, Masato Okada, Shun-ichi Amari

Deep Tempering (#20)Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio

Learning Word Representations with Hierarchical Sparse Coding (#21)Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith

Deep Learning as an Opportunity in Virtual Screening (#23)Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter

Revisit Long Short-Term Memory: An Optimization Perspective (#24)Qi Lyu, J Zhu

Locally Scale-Invariant Convolutional Neural Networks (#26)Angjoo Kanazawa, David Jacobs, Abhishek Sharma

Deep Exponential Families (#28)Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei

Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh

Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)Phong Le, Willem Zuidema

Deep Multi-Instance Transfer Learning (#32)Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel

Retrofitting Word Vectors to Semantic Lexicons (#34)Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith

Deep Sequential Neural Network (#35)Ludovic Denoyer, Patrick Gallinari

Efficient Training Strategies for Deep Neural Network Language Models (#71)Holger Schwenk



  • Posters, afternoon session (17:00-18:30):

Deep Learning for Answer Sentence Selection (#36)Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman

Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman

Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)Sergey Levine, Pieter Abbeel

SimNets: A Generalization of Convolutional Networks (#41)Nadav Cohen, Amnon Shashua

Phonetics embedding learning with side information (#44)Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux

End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio

BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)Stephan Gouws, Yoshua Bengio, Greg Corrado

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio

Reweighted Wake-Sleep (#48)Jorg Bornschein, Yoshua Bengio

Explain Images with Multimodal Recurrent Neural Networks (#51)Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille

Rectified Factor Networks and Dropout (#53)Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter

Towards Deep Neural Network Architectures Robust to Adversarials (#55)Shixiang Gu, Luca Rigazio

Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)Jimmy Ba, Hui Yuan Xiong, Brendan Frey

Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)Himabindu Lakkaraju, Richard Socher, Chris Manning

Deep Directed Generative Autoencoders (#59)Sherjil Ozair, Yoshua Bengio

Conditional Generative Adversarial Nets (#60)Mehdi Mirza, Simon Osindero

Analyzing the Dynamics of Gated Auto-encoders (#61)Daniel Im, Graham Taylor

Representation as a Service (#63)Ouais Alsharif, Joelle Pineau, philip bachman

Provable Methods for Training Neural Networks with Sparse Connectivity (#66)Hanie Sedghi, Anima Anandkumar

Trust Region Policy Optimization (#67)John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel

Document Embedding with Paragraph Vectors (#68)Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado

Backprop-Free Auto-Encoders (#69)Dong-Hyun Lee, Yoshua Bengio

Rate-Distortion Auto-Encoders (#73)Luis Sanchez Giraldo, Jose Principe