“Text-2015-01-07”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
readed paper
Lr讨论 | 贡献
(以“=readed paper= * Clustering words by projection entropy[Tianyi Luo] * Bootstrapping dialog systems with word embedding[Rong Liu] * Neural machine translation by jointly learn...”替换内容)
 
第3行: 第3行:
 
* Bootstrapping dialog systems with word embedding[Rong Liu]
 
* Bootstrapping dialog systems with word embedding[Rong Liu]
 
* Neural machine translation by jointly learning to align and translate[Dongxu Zhang]
 
* Neural machine translation by jointly learning to align and translate[Dongxu Zhang]
 
 
 
 
 
 
 
 
Deep Learning and Representation Learning Workshop: NIPS 2014
 
Search this site
 
HOME
 
ACCEPTED PAPERS
 
CALL FOR PAPERS
 
INVITED SPEAKERS
 
PROGRAM COMMITTEE
 
SCHEDULE
 
SUBMISSION
 
SITEMAP
 
Accepted papers
 
Oral presentations:
 
 
 
cuDNN: Efficient Primitives for Deep Learning (#49)
 
Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer
 
 
Distilling the Knowledge in a Neural Network (#65)
 
Geoffrey Hinton, Oriol Vinyals, Jeff Dean
 
 
Supervised Learning in Dynamic Bayesian Networks (#54)
 
Shamim Nemati, Ryan Adams
 
 
Deeply-Supervised Nets (#2)
 
Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
 
 
 
 
Posters, morning session (11:30-14:45):
 
 
Unsupervised Feature Learning from Temporal Data (#3)
 
Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun
 
 
Autoencoder Trees (#5)
 
Ozan Irsoy, Ethem Alpaydin
 
 
Scheduled denoising autoencoders (#6)
 
Krzysztof Geras, Charles Sutton
 
 
Learning to Deblur (#8)
 
Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf
 
 
A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)
 
Alireza Makhzani, Brendan Frey
 
 
"Mental Rotation" by Optimizing Transforming Distance (#11)
 
Weiguang Ding, Graham Taylor
 
 
On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)
 
Taichi Kiwaki, Kazuyuki Aihara
 
 
Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)
 
Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng
 
 
Understanding Locally Competitive Networks (#15)
 
Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber
 
 
Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)
 
Avraham Ruderman
 
 
Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)
 
Ryo Karakida, Masato Okada, Shun-ichi Amari
 
 
Deep Tempering (#20)
 
Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio
 
 
Learning Word Representations with Hierarchical Sparse Coding (#21)
 
Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith
 
 
Deep Learning as an Opportunity in Virtual Screening (#23)
 
Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter
 
 
Revisit Long Short-Term Memory: An Optimization Perspective (#24)
 
Qi Lyu, J Zhu
 
 
Locally Scale-Invariant Convolutional Neural Networks (#26)
 
Angjoo Kanazawa, David Jacobs, Abhishek Sharma
 
 
Deep Exponential Families (#28)
 
Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei
 
 
Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)
 
Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh
 
 
Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)
 
Phong Le, Willem Zuidema
 
 
Deep Multi-Instance Transfer Learning (#32)
 
Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas
 
 
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)
 
Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel
 
 
Retrofitting Word Vectors to Semantic Lexicons (#34)
 
Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith
 
 
Deep Sequential Neural Network (#35)
 
Ludovic Denoyer, Patrick Gallinari
 
 
Efficient Training Strategies for Deep Neural Network Language Models (#71)
 
Holger Schwenk
 
 
 
 
 
Posters, afternoon session (17:00-18:30):
 
 
Deep Learning for Answer Sentence Selection (#36)
 
Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman
 
 
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)
 
Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
 
 
Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)
 
Sergey Levine, Pieter Abbeel
 
 
SimNets: A Generalization of Convolutional Networks (#41)
 
Nadav Cohen, Amnon Shashua
 
 
Phonetics embedding learning with side information (#44)
 
Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux
 
 
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)
 
Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio
 
 
BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)
 
Stephan Gouws, Yoshua Bengio, Greg Corrado
 
 
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)
 
Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
 
 
Reweighted Wake-Sleep (#48)
 
Jorg Bornschein, Yoshua Bengio
 
 
Explain Images with Multimodal Recurrent Neural Networks (#51)
 
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille
 
 
Rectified Factor Networks and Dropout (#53)
 
Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
 
 
Towards Deep Neural Network Architectures Robust to Adversarials (#55)
 
Shixiang Gu, Luca Rigazio
 
 
Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)
 
Jimmy Ba, Hui Yuan Xiong, Brendan Frey
 
 
Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)
 
Himabindu Lakkaraju, Richard Socher, Chris Manning
 
 
Deep Directed Generative Autoencoders (#59)
 
Sherjil Ozair, Yoshua Bengio
 
 
Conditional Generative Adversarial Nets (#60)
 
Mehdi Mirza, Simon Osindero
 
 
Analyzing the Dynamics of Gated Auto-encoders (#61)
 
Daniel Im, Graham Taylor
 
 
Representation as a Service (#63)
 
Ouais Alsharif, Joelle Pineau, philip bachman
 
 
Provable Methods for Training Neural Networks with Sparse Connectivity (#66)
 
Hanie Sedghi, Anima Anandkumar
 
 
Trust Region Policy Optimization (#67)
 
John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel
 
 
Document Embedding with Paragraph Vectors (#68)
 
Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado
 
 
Backprop-Free Auto-Encoders (#69)
 
Dong-Hyun Lee, Yoshua Bengio
 
 
Rate-Distortion Auto-Encoders (#73)
 
Luis Sanchez Giraldo, Jose Principe
 
评论
 
Commenting disabled due to a network error. Please reload the page.
 
You do not have permission to add comments.
 
登录|最近的网站活动|举报滥用行为|打印页面|由 Google 协作平台强力驱动
 

2015年1月12日 (一) 06:22的最后版本

readed paper

  • Clustering words by projection entropy[Tianyi Luo]
  • Bootstrapping dialog systems with word embedding[Rong Liu]
  • Neural machine translation by jointly learning to align and translate[Dongxu Zhang]