|
|
第3行: |
第3行: |
| * Bootstrapping dialog systems with word embedding[Rong Liu] | | * Bootstrapping dialog systems with word embedding[Rong Liu] |
| * Neural machine translation by jointly learning to align and translate[Dongxu Zhang] | | * Neural machine translation by jointly learning to align and translate[Dongxu Zhang] |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | Deep Learning and Representation Learning Workshop: NIPS 2014
| |
− | Search this site
| |
− | HOME
| |
− | ACCEPTED PAPERS
| |
− | CALL FOR PAPERS
| |
− | INVITED SPEAKERS
| |
− | PROGRAM COMMITTEE
| |
− | SCHEDULE
| |
− | SUBMISSION
| |
− | SITEMAP
| |
− | Accepted papers
| |
− | Oral presentations:
| |
− |
| |
− |
| |
− | cuDNN: Efficient Primitives for Deep Learning (#49)
| |
− | Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer
| |
− |
| |
− | Distilling the Knowledge in a Neural Network (#65)
| |
− | Geoffrey Hinton, Oriol Vinyals, Jeff Dean
| |
− |
| |
− | Supervised Learning in Dynamic Bayesian Networks (#54)
| |
− | Shamim Nemati, Ryan Adams
| |
− |
| |
− | Deeply-Supervised Nets (#2)
| |
− | Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
| |
− |
| |
− |
| |
− |
| |
− | Posters, morning session (11:30-14:45):
| |
− |
| |
− | Unsupervised Feature Learning from Temporal Data (#3)
| |
− | Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun
| |
− |
| |
− | Autoencoder Trees (#5)
| |
− | Ozan Irsoy, Ethem Alpaydin
| |
− |
| |
− | Scheduled denoising autoencoders (#6)
| |
− | Krzysztof Geras, Charles Sutton
| |
− |
| |
− | Learning to Deblur (#8)
| |
− | Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf
| |
− |
| |
− | A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)
| |
− | Alireza Makhzani, Brendan Frey
| |
− |
| |
− | "Mental Rotation" by Optimizing Transforming Distance (#11)
| |
− | Weiguang Ding, Graham Taylor
| |
− |
| |
− | On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)
| |
− | Taichi Kiwaki, Kazuyuki Aihara
| |
− |
| |
− | Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)
| |
− | Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng
| |
− |
| |
− | Understanding Locally Competitive Networks (#15)
| |
− | Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber
| |
− |
| |
− | Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)
| |
− | Avraham Ruderman
| |
− |
| |
− | Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)
| |
− | Ryo Karakida, Masato Okada, Shun-ichi Amari
| |
− |
| |
− | Deep Tempering (#20)
| |
− | Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio
| |
− |
| |
− | Learning Word Representations with Hierarchical Sparse Coding (#21)
| |
− | Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith
| |
− |
| |
− | Deep Learning as an Opportunity in Virtual Screening (#23)
| |
− | Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter
| |
− |
| |
− | Revisit Long Short-Term Memory: An Optimization Perspective (#24)
| |
− | Qi Lyu, J Zhu
| |
− |
| |
− | Locally Scale-Invariant Convolutional Neural Networks (#26)
| |
− | Angjoo Kanazawa, David Jacobs, Abhishek Sharma
| |
− |
| |
− | Deep Exponential Families (#28)
| |
− | Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei
| |
− |
| |
− | Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)
| |
− | Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh
| |
− |
| |
− | Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)
| |
− | Phong Le, Willem Zuidema
| |
− |
| |
− | Deep Multi-Instance Transfer Learning (#32)
| |
− | Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas
| |
− |
| |
− | Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)
| |
− | Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel
| |
− |
| |
− | Retrofitting Word Vectors to Semantic Lexicons (#34)
| |
− | Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith
| |
− |
| |
− | Deep Sequential Neural Network (#35)
| |
− | Ludovic Denoyer, Patrick Gallinari
| |
− |
| |
− | Efficient Training Strategies for Deep Neural Network Language Models (#71)
| |
− | Holger Schwenk
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | Posters, afternoon session (17:00-18:30):
| |
− |
| |
− | Deep Learning for Answer Sentence Selection (#36)
| |
− | Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman
| |
− |
| |
− | Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)
| |
− | Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
| |
− |
| |
− | Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)
| |
− | Sergey Levine, Pieter Abbeel
| |
− |
| |
− | SimNets: A Generalization of Convolutional Networks (#41)
| |
− | Nadav Cohen, Amnon Shashua
| |
− |
| |
− | Phonetics embedding learning with side information (#44)
| |
− | Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux
| |
− |
| |
− | End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)
| |
− | Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio
| |
− |
| |
− | BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)
| |
− | Stephan Gouws, Yoshua Bengio, Greg Corrado
| |
− |
| |
− | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)
| |
− | Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
| |
− |
| |
− | Reweighted Wake-Sleep (#48)
| |
− | Jorg Bornschein, Yoshua Bengio
| |
− |
| |
− | Explain Images with Multimodal Recurrent Neural Networks (#51)
| |
− | Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille
| |
− |
| |
− | Rectified Factor Networks and Dropout (#53)
| |
− | Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
| |
− |
| |
− | Towards Deep Neural Network Architectures Robust to Adversarials (#55)
| |
− | Shixiang Gu, Luca Rigazio
| |
− |
| |
− | Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)
| |
− | Jimmy Ba, Hui Yuan Xiong, Brendan Frey
| |
− |
| |
− | Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)
| |
− | Himabindu Lakkaraju, Richard Socher, Chris Manning
| |
− |
| |
− | Deep Directed Generative Autoencoders (#59)
| |
− | Sherjil Ozair, Yoshua Bengio
| |
− |
| |
− | Conditional Generative Adversarial Nets (#60)
| |
− | Mehdi Mirza, Simon Osindero
| |
− |
| |
− | Analyzing the Dynamics of Gated Auto-encoders (#61)
| |
− | Daniel Im, Graham Taylor
| |
− |
| |
− | Representation as a Service (#63)
| |
− | Ouais Alsharif, Joelle Pineau, philip bachman
| |
− |
| |
− | Provable Methods for Training Neural Networks with Sparse Connectivity (#66)
| |
− | Hanie Sedghi, Anima Anandkumar
| |
− |
| |
− | Trust Region Policy Optimization (#67)
| |
− | John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel
| |
− |
| |
− | Document Embedding with Paragraph Vectors (#68)
| |
− | Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado
| |
− |
| |
− | Backprop-Free Auto-Encoders (#69)
| |
− | Dong-Hyun Lee, Yoshua Bengio
| |
− |
| |
− | Rate-Distortion Auto-Encoders (#73)
| |
− | Luis Sanchez Giraldo, Jose Principe
| |
− | 评论
| |
− | Commenting disabled due to a network error. Please reload the page.
| |
− | You do not have permission to add comments.
| |
− | 登录|最近的网站活动|举报滥用行为|打印页面|由 Google 协作平台强力驱动
| |